Humidity Dewpoint Carbon Dioxide Barometers Meteorology

100 Commerce Way, Woburn, MA 01801 TEL: 1-888-VAISALA (824-7252) FAX: (781) 933-8029 E-MAIL: incsales@vaisala.com Catalog-on-line:www.vaisala.com/inc/sales

Page blank on purpose.

Table of Contents

OVERVIEW

Vaisala Sensor Technology	7
Vaisala Product Line	11

HUMIDITY, DEWPOINT AND TEMPERATURE INSTRUMENTS

Portables

	Desktop data processor and calibrator, HMI 38	13-14
	Probes for desktop data processor and calibrator, HMP 35E, HMP 36E & HMP 37E	15-16
	Hand held calibrator/indicator with high temperature probe, HMI 41 with HMP 46	17-18
NEW	Probes for hand held indicator/calibrator, HMP 41, HMP 42 & HMP 45	19-20
•	Pocket sized relative humidity and temperature indicator, HM 34	21-22
	Concrete humidity measuring system, HM 44	23-24
	Industrial Transmitters	
NEW	Measuring moisture in oil, HMP 228	25-26
•	Wall-mounting, HMP 231	27-28
	Tight spaces and duct mounting, HMP 233	29-30
	Pressurized spaces, HMP 234	31-32
	Demanding high temperature applications, HMP 235	33-34
NEW	Adjustable probe head for ease of installation into pressurized spaces, HMP 238	35-36
	General purpose applications, HMP 141, 142 & 143	37-38
	Intrinsically Safe Transmitters and Probes	
NEW	Transmitter featuring probe interchangeability, HMT 360	39-40
NEW	Probe for wall-mounting applications, HMP 361	41
NEW	Probe for confined spaces and duct mounting, HMP 363	41
NEW	Probe for pressurized spaces, HMP 364	42
	Probe for demanding high temperature applications, HMP 365	
NEW	Adjustable probe for pressurized spaces, HMP 368	42
•	FM Approved wall-mounting humidity transmitter, HMP 260 EX	

Table of Contents - Page 2

HVAC/EMCS Transmitters

	Wall and duct-mount transmitters, HMW/D 60/70 Series	45-46
	NEMA 4 transmitters, HMW 21/31 Series	47-48
	Outdoor transmitters with radiation and precipitation shield, HMD 60/70 O Series	49-50
	Calibration-free transmitters, HMD/W 40/50 Series	51-52
	OEM and Custom Humidity Instruments	
	Calibration-free module with interchangeable sensor, HUMITTER®	53-54
	Relative humidity modules for custom applications, HMM 22D & HMM 30C	55-56
NEW	Humidity, dewpoint and temperature modules for demanding applications, HMM 210 Series	57-58
	Calibration Instruments and Accessories	
NEW	Humidity calibrator, HMK 15	59-60
•	Sensors, filters, chart recorder, panel meter, adapters, mounting flanges and PsyCalc Psychrometric software	
	DEWPOINT TRANSMITTERS FOR EXTREME CONDITIONS	
	Condensing environments and challenging outdoor applications, HMP 243	63-64
	High temperature applications (up to 662°F), DMP 246	. 65-66
	Low dewpoint applications, DMP 248	67-68
	Process sampling system, DSS 10	69-70
	CO, PRODUCTS	
	Portable Meters, GM 12A and GM 12B	71-72
	Indoor air quality instruments for demand control ventilation applications featuring CARBOCAP® Technology, GMD/W 20 Series	73-74
NEW	LonWorks® options for GMD/W 20 series CO ₂ transmitters, GML 20 and GML 20T	75-76
1	For industrial applications, GMP 111 & GMP 111E	
	OEM modules for HVAC/EMCS applications featuring CARBOCAP® technology, GMM 20W	79-80

Next Page

To INDEX

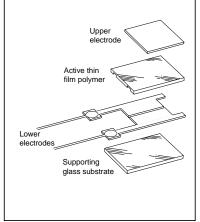
Table of Contents - Page 3

NEW	OEM modules with remote interchangeable probes for demanding applications featuring CARBOCAP® technology, GMM 220 Series	83-84
	CO ₂ Accessories	85
	NIST TRACEABLE BAROMETERS	
	Analog barometers, PTB 100 Series	87-88
	Digital barometers, PTB 220 Series	89-90
NEW	Digital barometer transfer standard, PTB 220TS	89-90
NEW	Combination barometer, humidity, and temperature digital transmitter, PTU 200	91-92
	METEOROLOGICAL PRODUCTS	
	Radiation shield and probe, 2212 HM, HMP 45A and HMP 45D	93-94
NEW	Wind measurement systems including sensors and displays	95-96
-	Mobile Automatic Weather Station, MAWS 101	97-98
	CALIBRATION LABORATORY and SERVICE	99
	CATALOG PRODUCT INDEX	101
	PRICE LIST TABLE OF CONTENTS	102
	TRANSMITTER SELECTION GUIDE COVER	/INDEX
	220/230, 240, 260/360 SERIES SELECTION GUIDE	PAGE 2
	140, 60/70 SERIES SELECTION GUIDE	PAGE 3
	21/31, 40/50 SERIES SELECTION GUIDE	PAGE 4

Page Blank on Purpose

Humidity Accuracy That Lasts!

RH Accuracy and Stability: Both are Important


When specifying an RH instrument, be sure to consider both: • Accuracy – how closely the instrument's readings agree with the standard to which it was calibrated

• **Stability** – the instrument's ability to maintain this same level of accuracy over time, i.e., **accuracy that lasts!** Any manufacturer can "tweak" an instrument to agree with a reference at the time of calibration. It is important that you know how long the instrument can maintain this level of accuracy.

BACK to
 Table of
 Contents
 Vaisala's patented HUMICAP® thin-film capacitance relative humidity sensors offer accuracy that lasts! That is, they are the most stable RH sensors available today, better than 0.5 %RH/year in normal air conditions. This means that when you select one of Vaisala's ±1%, 2%, or 3% instruments, you can rely on it to

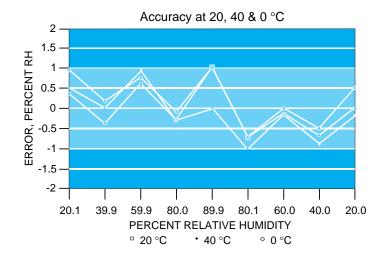
To INDEX maintain this same level of RH accuracy tomorrow, next week, and several months from now without recalibration.

HUMICAP[®] Sensor Construction

New Transmitter Selection Guide (see back pocket)

And Vaisala offers the most complete line of RH instruments: from low cost HVAC transmitters with interchangeable calibrationfree sensors, to hand-held and desktop instruments, to "smart" high performance humidity/ dewpoint transmitters. Seventeen new products are introduced in this catalog along with a comprehensive **Transmitter Selection Guide** to assist you in making the best choice.

ISO 9002 Certified Quality System; NIST Traceable Calibration and Service Laboratory


Vaisala Inc. has earned ISO 9002 certification for its Quality System. Our objective is continuous improvement in the quality of our products and services. The practical benefits that you can see today include:

• Products that perform to our written specifications – *open the box and enjoy years of trouble-free use thereafter.*

- Normal delivery of 1 to 5 unit orders within one week from receipt of order
- Normal delivery of 6 to 10 unit orders within two weeks from receipt of order.
- For large orders we check and inform you of delivery time before we accept the order. *We then meet this delivery time.*
- NIST-traceable calibration service to accuracy of: ±1%, 2%, and 3%.
- Five day *guaranteed* turn around of units sent in for warranty and after warranty service/calibration.
- Priority turnaround service also available for a modest additional charge.

Documented Performance

Vaisala's Calibration Laboratory maintains traceability to NIST by testing our transfer standards at NIST annually. The following NIST data documents the exceptional measurement performance attainable with Vaisala products (including calibration uncertainty, non-repeatability, hysteresis, non-linearity, and temperature dependence) at three temperatures, 20 °C, 40 °C and 0 °C.

NEW - The First Intrinsically Safe RH and Dewpoint Transmitters for Hazardous/Explosive Environments

The HMT 360 Series IS transmitters are the 21st century solution for measuring humidity and dewpoint in hazardous classified areas.

Instead of packaging the transmitter electronics in bulky and expensive enclosures to contain and dissipate explosions when they occur, Vaisala designed the HMT 360 electronics so that an explosion cannot occur.

The end user can realize substantial savings, both in the purchase price and in maintenance, when compared to the older technology.

A variety of probe designs that are all interchangeable with the transmitter electronics allow the user to rotate one probe on the transmitter while a second is being calibrated. In addition, probes can be rotated or exchanged between different transmitters while in the field.

Different HUMICAP[®] sensors are now available to optimize performance in high hydrogen, toluene, and hydrocarbon environments.

With products designed for wall-mount, confined spaces, high pressure, high temperature and pressurized spaces, the HMT 360 series is the most versatile family of transmitters on the market.

BACK to Table of Contents **Rugged Industrial Transmitters for RH and Dewpoint**

To Index

Select from "smart" programmable \pm 1% and \pm 2% transmitters. All have NEMA 4 enclosures offering protection in wet, condensing environments. Refer to new Transmitter Selection Guide (back pocket) to assist in making the best choice.

The HMP 230 series of "smart" ±1 % RH accuracy transmitters can be customized to meet your needs. Select: output parameters (RH, Td, T, absolute humidity, mixing ratio, wet bulb temperature, enthalpy); temperature range, serial or analog output, type of sensor head, etc.

The new DMP 240 series expands the operating

range further to include high temperature and low dewpoint applications without sacrificing accuracy or stability.

The 140 series offers humidity/ temperature measurement, ± 2% RH accuracy, analog outputs, and various mounting configurations.

For high temperature and low dew point applications, choose the new DMP 240.

High Accuracy, and Calibration-Free RH/T Transmitters for HVAC/EMCS

Select from the $\pm 2\%$ 60/70 series with extended operating temperature range or $\pm 3\%$ calibrationfree 40/50 series with INTERCAP[®] Interchangeable sensor. Refer to new Transmitter Selection Guide (back pocket) to assist in making the best choice for your HVAC control and building automation needs.

The 60/70 series of $\pm 2\%$, 0 to 100% RH and RH/T wall and duct-mount transmitters set the standard in the commercial HVAC industry. Select from a wide range of current loop and voltage output signals. These transmitters feature plug-in HUMICAP[®] sensors and unique one-point field calibration for both RH and T. Two and three-wire configurations are compatible with virtually all EMCS systems.

A novel feature of the 60/70 series duct units is the ability to remove the electronics without disassembling the unit from the duct.

With the 40/50 series of \pm 3%, 0 to 100% RH and RH/T transmitters, calibration expense and inconvenience are eliminated. The INTERCAP® sensors are totally interchangeable, allowing you to replace the sensor without recalibrating the instrument. They are available in wall and duct-mount, two-wire 4-20 mA, and three-wire selectable voltage output configurations.

BACK to Portable Data Processor, Indicators, Calibrator and Probes for RH and Table of Dewpoint

To INDEX

Vaisala's expanded product offering allows you to perform a wide variety of field and laboratory measurements accurately and conveniently.

With the addition of the new HMP 42 thin probe (\emptyset 4mm), it is now possible to measure relative humidity, dewpoint, and temperature in hard-to-reach spaces. The HMI 41 Digital Indicator offers menu driven software, multiple output options (RH, dewpoint, temperature, wet bulb, mixing ratio, absolute humidity), and 0 to 100% RH. Three other probes (fix mount, extended spiral cable, and high temperature) are also available and provide ±2% RH accuracy. Add a calibration cable and create a portable one-point calibrator.

The HMI 38 Data Processor has more standard features and at a lower price than previous offerings: menu driven software; six output selection (RH, dewpoint, temperature, wet bulb, mixing ratio, and absolute humidity); temperature up to 356 °F, rechargeable battery, analog and serial outputs, data logging, and NIST traceable certificate of calibration to \pm 1% accuracy. The HMI 38 is also designed for use as a field calibrator for Vaisala transmitters.

The pocket-sized HM 34 Humidity and Temperature indicator provides 0 to 100% RH measurement. Other features include: built-in extendable probe, automatic shut-off to conserve battery power, and fast response with \pm 2% accuracy.

Customized, Modular Relative Humidity Products for OEM Applications

Let Vaisala customize a solution to meet your unique requirements, or select from one of our standard OEM products.

Vaisala's 140 series products have a unique modular structure which permits the mixing and matching of electronics, sensing heads, and enclosures for a cost-effective, customized solution. Our engineering staff is also ready to design a unique proprietary solution, using Vaisala's patented HUMICAP® RH sensor technology, to meet your exact requirements.

Or select from one of our standard OEM products: **NEW:** The HMM 210 series modules offer humidity and dewpoint measurements for the most demanding applications.

The HUMITTER[®] RH and RH/T series offers compact, fully integrated electronics in a NEMA 4 enclosure, and a fully interchangeable INTERCAP[®] RH sensor which eliminates the need for recalibration.

The HMM 22D, with its small sensing head, and the HMM 30C, featuring a stainless steel sensor probe, offer high performance while meeting the need for low cost solutions.

BACK to Table of Contents

To INDEX

Vaisala's line of CO₂ instruments will meet your Indoor Air Quality (IAQ) and industrial needs. Our new duct/wall-mount transmitters and OEM products feature the new CARBOCAP[®], a sensor so stable that these instruments require calibration check only every five years. Vaisala utilizes patented nondispersive infrared (NDIR) technology for the most accurate, stable, and cost-effective CO₂ measurement solutions available. **NEW:** The GMM 220 series modules for demanding OEM applications feature remote hermetically sealed probes with CARBOCAP®® technology.

A cost-effective solution to your ventilation problems, the GMD/W 20 series CO₂ duct and wall mount transmitters, also featuring CARBOCAP® technology, are so stable they require calibration only every five years. This breakthrough self-compensating sensor technology is also utilized in the GMM 20W for OEM applications.

Temperature measurement has been added as an option to Vaisala's GMD/W20 series. Another example of our products being designed to meet our customers' needs.

Vaisala's portable CO_2 meter, model GM 12, is available in two measurement ranges (up to 3000 ppm and 3%) and offers a digital display, analog output and adjustable audible alarm. A battery charger and carrying case are included.

The GMP 111 for industrial applications is available with a standard NEMA enclosure, or an optional digital display.

Barometers for Industrial and Meteorological Applications

Vaisala's barometers utilize our patented BAROCAP[®] micromachined silicon capacitive sensor. BAROCAP offers unmatched accuracy and outstanding temperature and long-term stability. Choose from three series, all NIST traceable.

NEW: The PTU 200 combines barometric pressure, humidity and temperature measurement in a digital transmitter.

NEW: The PTB 220TS Barometric Pressure Transfer Standard offers a total output accuracy of ± 0.2 hPa (mbar), and comes in a handsome, solid oak carrying case.

Vaisala barometers offer excellent performance in a variety of applications including: weather stations, data buoys, environmental data logging, and pressure sensitive industrial equipment such as laser interferometers and lithography systems.

The PTB 100 series are analog barometers which offer excellent room temperature characteristics and very low power consumption.

The PTB 220 series, provide serial output and total accuracy of \pm 0.2 hPa (mbar) over wide meteorological pressure and temperature ranges. The PTB 220 also offers the ability to incorporate up to three independent BAROCAP sensors for double or triple redundancy.

BACK to Table of Contents

To INDEX

Reliable Meteorological Measurement Instruments and Systems

Vaisala is the largest worldwide manufacturer of meteorological instruments and systems, all of which are described in other publications available upon request. Here we are featuring a small selection of meteorological RH instruments and wind instruments and systems ideal for industrial applications such as power plants, paper mills, and refineries. Our HMP 45D relative humidity probe is designed for use with a solar radiation shield in outdoor conditions of -40 to +140°F (-40 to +60°C). For quick and easy calibration, the probe head containing the sensor and electronics can be removed from the probe body, a replacement installed and the measurement continued while the original sensor head is calibrated in a laboratory.

The HMD60UO/YO probes offer economical solutions for measuring outdoor RH and T as part of HVAC and building automation systems.

Vaisala's wind instruments are approved by the FAA for use in their Automated Surface Weather Observation (AWOS) at airports, and are available in flexible configurations, along with displays, to meet most industrial applications.

100 Commerce Way, Woburn, MA 01801TEL: 1-888-VAISALA (824-7252)FAX: (781) 933-8029E-MAIL: incsales@vaisala.comAccess catalog on-line at: www.vaisala.com/inc/ssdcat

🏵 VAISALA

HMI 38 Desktop Humidity Data Processor/Calibrator

FEATURES/BENEFITS

- Portable, versatile and easy to use
- Six user-selectable outputs: relative humidity, temperature, dewpoint, mixing ratio, wet bulb temperature, absolute humidity
- System configuration and parameters can be set by the user
- Data logging, built-in battery and optional carrying case
- Two analog outputs and serial interface
- Optional cables for calibration function
- NIST traceable field calibrator
- Each probe supplied with NIST traceable certificate of calibration

SIX OUTPUT VARIABLES

Up to two probes can be connected to the HMI 38. The probes measure the relative humidity and temperature of ambient air and, from these measurements, the Humidity Data Processor then calculates:

- Dewpoint temperature
- Wet bulb temperature
- Mixing ratio
- Absolute humidity

Both metric and non-metric units are available.

VERSATILE AND EASY TO USE

The HMI 38 Humidity Data Processor is a microprocessor-based instrument, which is ideal for measuring humidity, related variables and temperature in laboratories, storage areas, quality control areas and air-conditioned areas, such as computer rooms and cleanrooms.

The HMI 38 Humidity Data Processor can output six different variables, either through its two analog outputs, or via the RS 232C or RS 485 serial interface. A built-in rechargeable battery provides power for up to 8 hours of continuous use in the field.

The front panel menu guides the user through the operation. The user can configure the measurement system and the parameters controlling the HMI 38's operation, so that the system and its operation can be tailored to fit each application or any specific measurement. The user can connect two probes to each HMI 38 and choose which variables are needed and the order in which they are displayed. The display shows two variables at a time; to see the others, simply scroll the display with the arrow keys of the keypad.

DATA LOGGING AND DATA TRANSFER

The HMI 38 includes a data logging function. The user can select the delay for starting the data logging and the logging interval, or manually "catch" individual measurements in memory.

The HMI 38 stores the relative humidity and temperature measurements from both probes in memory; from these values it calculates the other variables when they are transferred to a computer or a printer through the serial line. The user can define the output format through the software to meet his application needs.

All measurements are displayed on the LCD front panel of the HMI 38 and output through the analog output channels or to a printer or computer via the RS 232C or RS 485 serial line. Measurement results are output continuously or, upon request, via the serial line. Several HMI 38 units can be connected to one RS 485 serial line; each of them is given an individual address.

USE AS FIELD CALIBRATOR

When used with an optional calibration cable, the HMI 38 also serves as a one-point or two-point calibrator for most Vaisala humidity and temperature transmitters. It also provides an accurate field humidity and temperature reference for other manufacturers' instruments.

Select the right cable:

Instrument	Calibration Cable Part No.
60/70 series	18300
230 series	18200
140 series	18300
20/30 series	18100

TECHNICAL DATA - HMI 38 Humidity Data Processor

Measured Variables

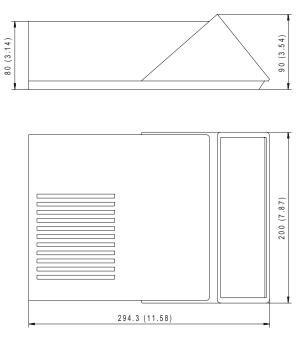
Relative humidity			
Indication range	0100 %RH		
Resolution	0.1 %RH		
Typical temperature dependence $\pm 0.2\%$			
over the entire operating temperature range			
Temperature			
Indication range	$-40^{\circ}+180^{\circ}F(-40^{\circ}+180^{\circ}C)$		
(temperature measurement range depends on the probe used)			
Resolution	$0.1^{\circ} \mathrm{F} (0.1^{\circ} \mathrm{C})$		
Typical temperature dependenc	e $0.007^{\circ} \text{ F} (0.004^{\circ} \text{ C})$		
of electronics			
Typical additional error caused			
by the HMI 38 at 68°F (+20°C)	0.11°F (±0.06 ° C)		
One and two-point calibration through front panel keypad.			

Calculated Variables

	Calculated Variables			
	on the probe used)			
	dewpoint temperature	-40+212 °F (-40+100 °C)		
BACK to	mixing ratio	0500 g _{H20} /kg d.a.		
	absolute humidity	$0600 g_{H20}/m^3$		
Table of	wet bulb temperature	32+212 °F (0+100 °C)		
Contents	1			
	Data Logging			
	Storage capacity			
To Index	in automatic logging	254 measurements from each probe		
	in catch logging	127 measurements from each probe		
	Logging interval	from 10 s to 99 h		
HMI 38		or catch logging		
Price List	Measurement speed			
	one probe	approx. 1 s		
	two probes	approx. 2 s		
	Analog Outputs			
	Two analog outputs	01 V & 05 V		
	freely selectable and adju	ıstable		
	Typical accuracy of analo			
	output at +68°F (+20°C)	-		
	Typical temperature dep	endence 0.003% (0.005 %/°C FS)		
	of analog output			
	Serial Interface			
	Data interfaces	RS 232C, RS 485		
	(asynchronous, only one			
	Data I/O speed (one cho			
	Data 1/0 speed (one end	4800, 9600		
	Communication paramet			
	data bits	7 or 8		
	stop bits	1 or 2		
	parity	even, odd or none		
	mode	full or half duplex		
	mode			

D-type female D98

display/printer or computer compatible ASCII characters


General

Display 2 x 6 character alphanum	
	high contrast, wide-view angle
	LCD
Character height	3.85 mm (0.15")
Keyboard	4 x 4 tactile membrane switches
Number of probes	12
Supply voltage	12 VDC (1116 V), 0.2 A
Rechargeable battery pack	8 NiCd 1.2 V cells,
	standard 'AA' size
operating time in continuous u	ise 8 hours
operating time in data logging	24 hours
charging time	6 hours
Power consumption during chai	rge 3 W maximum
Recommended external load	>2 kohm (to ground)
for 01V output	
Recommended external load	>10 kohm (to ground)
for 05 V output	
Housing material	ABS plastic
Operating temperature range	32122 °F (0+50 °C)
Storage temperature range	-4+158 °F (-20+70 °C)
Operating humidity range	95 %RH maximum,
	noncondensing
Storage humidity range 90 %RH maximu	
Note: The HMI 38 can be opera	ted at a higher relative

Note: The HMI 38 can be operated at a higher relative humidity than stored, because the air in a warm instrument has a lower relative humidity than ambient air. Specifications subject to change without notice.

Dimensions in mm (inches)

HMI 38

Connector Data format

🏵 VAISALA

Humidity and Temperature Probes for HMI 38 Humidity Data Processor/Calibrator

FEATURES/BENEFITS

- HUMICAP® sensor
- 0 to 100% RH measurement
- Wide temperature measurement range HMP 35E: -40...+140 °F (-40...+60 °C) HMP 36E: -40...+176 °F (-40...+80 °C) HMP 37E: -40...+248 °F (-40...+120 °C)
- NIST traceable certificate of calibration is supplied

HIGH PERFORMANCE IN ALL ENVIRONMENTS

The HMP 35E, HMP 36E, and HMP 37E probes feature Vaisala's HUMICAP[®] humidity sensor which is known for its high accuracy, excellent long-term stability, negligible hysteresis, and its resistance to dust and most chemicals. Reliable and rugged, these probes are designed specifically for use with the HMI 38 Humidity Data Processor.

The HMP 35E is for general purpose measurements where the temperature normally stays below 140 °F (60 °C) and never exceeds 176 °F (80 °C).

The rugged HMP 36E is designed for continuous use in temperatures up to 176 °F (+80°C), but can withstand temperatures up to 320 °F (160 °C) for a short while. Its long stainless steel shaft works well in difficult-to-reach areas, and can also be used as a piercing probe.

The versatile HMP 37E is designed for temperatures up to 248 °F (120 °C), but it can be used in short-term measurements in temperatures as high as 356 °F (180 °C). The HMP 37E is ideally suited for use in tight and difficult-to-reach areas.

EASY AND QUICK CALIBRATION

The HMP 35E, HMP 36E and HMP 37E probes are easy to calibrate either at one point against an accurate reference instrument, or at two points in controlled laboratory conditions. Temperature calibration can be done with the software commands alone, while humidity calibration requires potentiometer adjustment at the probes.

Protection class

TECHNICAL DATA - HMP 35E, HMP 36E, HMP 37E PROBES

-40...+140 °F (-40...+60 °C)

-40...+176 °F (-40...+80 °C)

-40...+176 °F (-40...+80 °C)

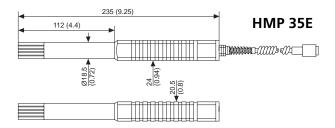
-40...+320 °F (-40...+160 °C)

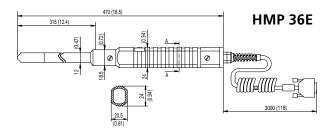
-40...+248 °F (-40...+120 °C)

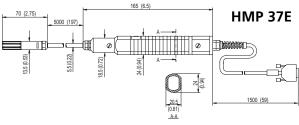
-40...+356 °F (-40...+180 °C)

PT 100 IEC 751 1/3 Class B

4-wire


Relative Humidity


Measurement range	0100 %RH
Output signal range	0.0021 VDC (equals
	0.2100 %RH)
Accuracy at +68°F (+20°C) incl	uding nonlinearity and
hysteresis	
against field references	±2 %RH (090 %RH)
(ASTM E104-85)	±3 %RH (90100 %RH)
against factory references	±1 %RH (090 %RH)
	±2% (90100 %RH)
Temperature dependence	±0.02%RH/°F (±0.04 %RH/°C)
of electronics	
Typical long-term stability	better than 1 %RH per year
Response time at +68°F (+20°C	
90 % response	5 s with grid
	15 s with membrane filter
Sensor	HUMICAP [®] K


Housing material ABS plastic Connector D-type male D9P Cable length HMP 35E 1500 mm HMP 36E 1150/3000 mm spiral cable HMP 37E 5 m between sensor head and electronics, 1.5 m cable between electronics and connector Weight HMP 35E 180 g HMP 36E 400 g HMP 37E 500 g

NEMA 3S (IP 55)

Specifications subject to change without notice.

Dimensions	in	mm
(inches)		

BACK to		
Table of		
Contents		

General

Temperature

Measurement range-HMP 35E

Measurement range-HMP 36E

Measurement range-HMP 37E

continuous measurement

short-term measurement Temperature sensor

continuous measurement

short-term measurement

continuous measurement short-term measurement

	General	
To INDEX	Supply voltage from HMI 38	716 VDC
	Current consumption	±4 mA
HMP 35's	Operating temperature range	
	sensor head	
Price List	HMP 35E	-40+140 °F (-40+60 °C)
	HMP 36E	-40+176 °F (-40+80 °C)
	HMP 37E	-40+248 °F (-40+120 °C)
	electronics	-40+140 °F (-40+60 °C)
	Sensor protection - standard	
	HMP 35E	chromium-plated membrane
		filter, part no. 16126HM
	HMP 36E	bronze sintered filter, part no.
		0195
	HMP 37E	PPS grid with stainless steel
		netting, part no. 16720
	Sensor protection - optional	
	HMP 35E	chromium-plated plastic grid,
		part no. 15795
		bronze sintered filter 37 μm,
		part no. 6685
		bronze sintered filter 216 µm,
		part no. 6686
	HMP 36E	membrane filter, part no.
		10159HM
	HMP 37E	PPS grid, part no. 16562

🌶 VAISALA HMI 41/HMP 46 Hand Held Humidity/ **Dewpoint Indicator and Field Calibrator** with High Temperature Probe

FEATURES

- ±1% RH accuracy (0...90%)
- ±2% (90...100%)
- -40...+212 °F (up to 356 °F for short periods)
- Serves as an easy-to-use field calibrator when used with HMP 46 probe and calibration cables
- Versatile and easy to use
- Measures humidity and temperature
- Calculates dewpoint, wet bulb temperature, absolute humidity and mixing ratio
- Full 0 to 100 %RH measurement
- Excellent stability
- Optional carrying case
- Optional calibration cables
- Available as complete calibration kit (HMK 41)

CALIBRATION KIT HMK41

HMK 41 includes HMI 41, HMP 46, NIST traceable certificate of calibration, carrying case, and choice of one of the following calibration cables:

Cable Part # fo	<u>r Calibrating</u>
-----------------	----------------------

19116	HM60/70's, HM 140's, HMM 22D
19164	HMP230's, HMM 210
19165	HM20/30's, HMP 130's, HMM 30C

HIGH TEMPERATURE PROBE

The HMP 46 humidity and temperature probe is designed for measurements in ducts or chambers in humidities of 0...100%RH and at temperatures from -40 to +212 °F (-40 to +100 °C). For short periods of time the probe can even be used in temperatures of up to +356 °F (+180 °C).

The HMP 46 probe's structure is solid and rugged; its stainless steel probe head is made to withstand rough handling in mechanically demanding applications. The probe's long shaft can also reach otherwise unreachable places, and can be used as a piercing probe.

VERSATILE AND EASY TO USE

In addition to displaying the humidity and temperature readings, the HMI 41 can calculate dewpoint and wet bulb temperature, absolute humidity and mixing ratio - no more awkward conversion tables and complex calculation.

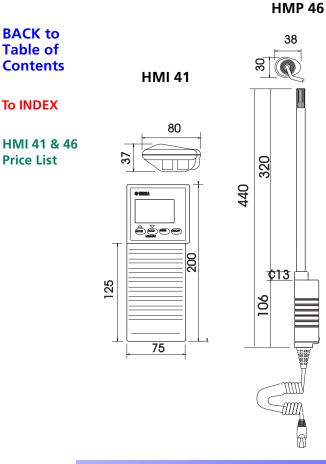
The indicator has an easy-to-read two line liquid crystal display. The display unit (metric or nonmetric) are easily selected.

These features, plus fast response time, high measurement accuracy and excellent stability, as well as the wide temperature range of the probe, make the HMI 41/HMP 46 combination an ideal choice for the most demanding applications.

HMI 41 with HMP 46

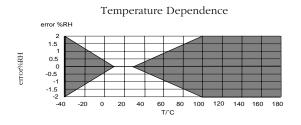
HIGH PERFORMANCE SENSOR

The probes incorporate Vaisala's latest HUMICAP® sensor. This sensor has high accuracy, excellent longterm stability and negligible hysteresis. Insensitive to dust, particulate dirt and most chemicals, the HUMICAP® is also used in Vaisala's industrial humidity transmitters.



TECHNICAL DATA - HMI 41 & HMP 46 CALIBRATOR/INDICATOR AND PROBE

HMI 41 Indicator


Calculated variables	dewpoint temperature,
	absolute humidity, wet bulb
	temperature, mixing ratio
Resolution	0.1 %RH; 0.1 °F
Power supply	4 batteries, type AA (LR 6)
Battery operation time (alkali	ine
batteries)	72 h continuous use
Auto-off function	
Operating temperature	-4+140 °F (-20+60 °C)
Operating storage	non-condensing
Storage temperature	-40+158 °F (-40+70 °C)
Display	two line LCD
Housing material	ABS plastic
Housing classification	IP 53 (with connectors blocked)
Weight (incl. batteries)	300 g
Options	
calibrator function	see front page for cable part no.
carrying case for HMI41 & l	HMP46 part no. 85-21797
serial communication cable	part no. 19446
Maximum measurement erro	r of indicator at +68°F (+20 °C)
humidity	±0.1 %RH
temperature	$\pm 0.18^{\circ}$ F ($\pm 0.1^{\circ}$ C)

Dimensions in mm

HMP 46 Probe

Humidity		
Measurement range	0100 %RH non condensing	
Maximum achievable accuracy	when calibrated	
against high quality, certified h	umidity standards	
090 %RH	±1 %RH	
90100 %RH	±2 %RH	
when calibrated against salt solutions (ASTM E104-85)		
090 %RH	±2 %RH	
90100 %RH	±3 %RH	

Typical long-term stability	better than 1 %RH per year
Response time (90%)	
at +20°C in still air w/sintered	filter 15 s
Humidity sensor	HUMICAP [®] 180

Temperature

Continuous measurement	-40+212 °F (-40+100°C)
Short-term measurement	-40+356 °F (-40+180°C)
Accuracy at 68°F (+20°C)	±0.36°F (±0.2 °C)
Accuracy over the measurement	trange

°C 0.6
0.4
0.2
o
-0.2
-0.4
-0.6
-40 -20 0 20 40 60 80 100 120 140 160 ¹⁸⁰ T/ [°] C

Temperature sensor

Pt 100 IEC 751 1/3 class B

General

Typical ranges of calculate	ed variables
dewpoint temperature	-40+212 °F (-40+100°C)
absolute humidity	0600 g/m ³
wet bulb temperature	32+212 °F (0100°C)
mixing ratio	0600 g/Kg d.a.
Cable length	1500 mm; extended spiral cable
Operating temperature rat	nge
for electronics	-4+140 °F (-20+60 °C)
Electronics housing	ABS plastic
Probe head	stainless steel
Housing classification	
electronics	NEMA 4 (IP 65)
Sensor protection	sintered filter, part no. 0195
option	membrane filter, part no. 10159HM
	plastic grid, part no. 6221
Weight	450 g
Meets EMS standards EN5	0081-1 and EN50082-2

🏵 VAISALA

Humidity and Temperature Probes for the HMI 41 Indicator

VERSATILE AND EASY TO USE

Vaisala's HMI 41 hand-held indicator can be used with any one of the four probes to quickly and easily measure humidity and temperature, and to make other measurement calculations such as dewpoint, wet bulb temperature, absolute humidity, and mixing ratio.

The HMI 41 has an easy-to-read LCD display. Temperature readout is available in either degrees Centigrade or Fahrenheit. Calculated variables are available in metric and non-metric.

The HMI 41 with probes is ideal for use in a variety of spot checking applications such as plant maintenance; air-conditioning system installation and inspection: freezers; and storage and production areas.

HIGH PERFORMANCE SENSOR

Vaisala probes incorporate the HUMICAP[®] humidity sensor, known for its high accuracy, reliability, and long-term stability. For more than twenty-five years, this rugged sensor has proven itself time and time again to be resistant to dust and most chemicals.

HMP 41: This humidity and temperature probe is fix-mounted directly on the HMI 41 indicator. It can be upgraded to an HMP 45 by purchasing the HMH 45 handle and cable option.

HMP 45: This humidity and temperature probe features an extended spiral cable.

HMP 42: The HMP 42 humidity and temperature probe can be used for spot checking humidity and temperature in applications which require an extremely thin probe, such as:

- for monitoring the drying of structures during construction or after water damage
- in tight places
- in ducts or chambers
- under a linoleum floor

The probe diameter is only 0.16 inch. (4 mm), allowing access into very small tight, and hard-to-reach spaces.

HMP 46: See preceding data sheet.

HMI 41 with HMP 41

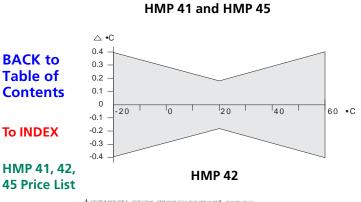
HMI 41 with HMP 45

HMI 41 with HMP 42

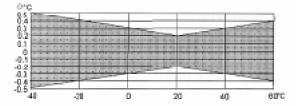
TECHNICAL DATA - HMP 41, HMP 42 AND HMP 45 PROBES

HMP 41, HMP 42, and HMP 45 Probes

Humidity	
Measurement range	0100 %RH non condensing
Accuracy at +68°F (+20°C)	
when calibrated against	
salt solutions (ASTM E014-85)	±2 %RH (090%RH)
	±3 %RH (90100%RH)
Temperature dependence of	
measurement	±0.03%RH/°F (±0.05 %RH/°C)
Typical long-term stability	better than 1 %RH per year
Sensor HMP 41 & 45	HUMICAP [®] 180
Sensor HMP 42	HUMICAP [®] MINI
Response time (90%) at +68°F (+20°C)
in still air	(HMP 41, 45) 15s
	(HMP 42) 30s
Temperature	
Measurement range Sensor hea	d
HMP 41 and 45	-4+140°F (-20+60 °C)


 HMP 41 and 45
 -4...+140°F (-20...+60 °C)

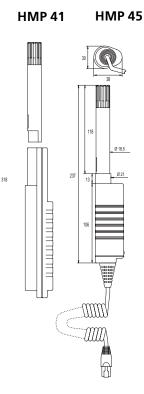
 HMP 42
 -40...+212°F (-40...+100 °C)

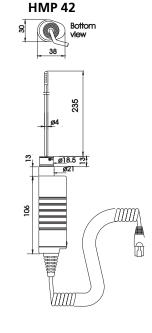

 Sensor (HMP 41 & 45)
 PT 1000 IEC 751 1/3 class B

 (HMP 42)
 PT 1000 IEC 751 class B

Accuracy (including $\pm 0.27^{\circ}$ F ($\pm 0.15^{\circ}$ C) calibration accuracy)

Accuracy over measurement range:


* <u>Sensor Protection</u> HMP 41 & 45 option	pl. grid membrane filter	HM46717 2782HM
HMP42	steel grid	19867HM
membrane	tube set (5pcs)	19858HM


General

Typical ranges of calculated varia	bles
dewpoint temperature	-40°F+140°F (40+60°C)
absolute humidity	0160 g/m ³
wet bulb temperature	32140°F (0+60°C)
mixing ratio	0160 g/Kg d.a.
Cable length (HMP 42 & 45)	1500 mm; extended spiral
	cable
Operating temperature range (41	& 45) -40+140°F
	(-40+60 °C)
(HMP 42)	-4+140°F (-20+60 °C)
Housing material	ABS plastic
Housing classification	
electronics	NEMA 4 (IP 65)
Sensor protection*	

Weight	
HMP 41	30 g
HMP 45	160 g
HMP 42	200 g
Specifications subject to change without further notice.	

HUMICAP[®] is a registered trademark of Vaisala.

🏵 VAISALA

HM 34 Pocket-size Relative Humidity and Temperature Indicator

SPECIAL FEATURES

- Lightweight, pocket-sized
- Extendable probe
- Automatic POWER-OFF
- Measures humidity and temperature
- Fast response with ±2% accuracy

IDEAL FOR SPOT-CHECKING HUMIDITY LEVELS

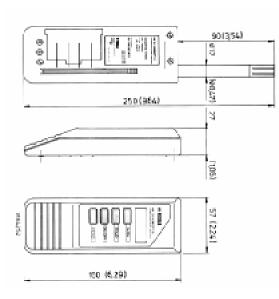
This pocket-sized HM 34 meter provides a fast and convenient way to accurately spot-check relative humidity and temperature. The instrument includes a HOLD button which allows the user to retain an RH or T measurement until it has been noted or recorded. If no measurements are made for three minutes, the unit automatically switches itself off. This automatic POWER-OFF function prevents the possibility of accidental discharge of the HM 34's battery.

FAST AND EASY-TO-USE

The HM 34 indicator incorporates Vaisala's next generation HUMICAP[®] Sensor, which is accurate, durable and insensitive to dust and most chemical contaminants. Both the humidity and temperature sensors are housed in an extendable probe that is retracted back into the rugged plastic casing for storage, creating a compact and easy to carry device.

EACH UNIT INCLUDES:

- 9 V battery
- Attached probe
- 0.2 µm protective membrane filter
- Carrying case


The handy HM 34 provides accurate spot checks of humidity and temperature.

TECHNICAL DATA - HM 34

E-MAIL: incsales@vaisala.com

BACK to Table of **Contents**

To INDEX

HM 34 **Price List**

Relative Humidity Range:

Relative Humbility	
Range:	0 to 100% RH
Accuracy:	±2% (0 to 90% RH)
	±3% (90 to 100% RH)
Resolution:	0.1% RH
Temperature	
Dependence:	±0.02%RH/ ⁰ F (±0.04% RH/°C)
Sensor type:	HUMICAP [®] H
	thin film capacitive sensor
Response time (90%):	15 sec with membrane filter
	15 sec with sintered filter
	5 sec with plastic grid
Temperature	
Range:	-4 to +140°F (-20 to +60°C)
Accuracy:	±0.5°F (±0.3 °C)
Resolution:	0.1 °F (0.1 °C)
Temperature	
Dependence:	±0.02 °F/°F (±0.02 °C/°C)
Sensor:	Pt 100 IEC 751 1/3 Class B
General	
Display:	3 1/2 digit LCD
Weight:	250 g
Size:	6.3" x 2.2" x 1.1" (160 x 57 x 27mm)
Power supply:	9 V battery
Battery life:	50 h
Hold function:	Pushbutton hold of displayed value
POWER OFF:	Automatic, after 3 minutes, unless
	HOLD is activated
Ordering Information:	
HM 34 C	with °C temperature reading

Ordering HM 34 C HM 34 F

with °F temperature reading

Specifications subject to change without notice.

HM 44 Concrete Humidity Measurement System

EVERYTHING YOU NEED TO CONDUCT MULTIPLE SAMPLINGS

Vaisala's HM 44 set is the ideal solution for measuring humidity in structures such as concrete. The kit includes the following parts:

- HMI 41 indicator with batteries
- HMP 44 RH & T probes
- Protective cover with lid, 3 pcs (19268HM)
- Rubber plugs, 12 pcs (19267HM)
- Plastic sleeves, 12 pcs (19266HM)
- Carrying case

TOO MUCH WATER IN STRUCTURES MEANS TROUBLE

Reducing the water content of concrete, or other materials, during construction work is an essential part of the building process. The same applies to drying out buildings after water damage.

The materials used should be dried just right – enough, but not too much. Excessive drying wastes both energy and precious time. On the other hand, too short a drying time may cause problems later on: floor coverings start swelling or bending, or adhesives break down, or mold begins to grow. To save time and money, a reliable and accurate method of measuring the optimum drying of the construction materials is needed.

A RELIABLE METHOD FOR MEASURING HUMIDITY IN STRUCTURES

Measuring relative humidity in a structural material such as concrete is a clear indication of whether the material is dry enough.

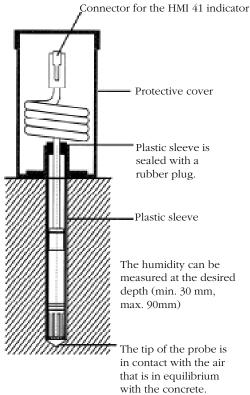
The HM 44 kit is ideal for measuring humidity in concrete. First, a hole is bored at the required depth, cleaned out, and a plastic sleeve inserted. At this point, the probe can be pushed into the sleeve and sealed. The material at the bottom of the hole releases humidity into the space around the probe until equilibrium is reached. The HMI 41 meter can then be connected to the probe cable and a reading taken. Alternatively, the sleeve can be plugged after insertion. When the humidity in the hole has reached equilibrium, the probe is inserted and left to stabilize for a short time before a reading is taken.

The supplied cover protects the probe on the construction site, and against the effects of the ambient conditions. Concrete dries unevenly and is usually drier on the surface. A surface measurement alone may give misleading information. The sleeve enables measurements to be made at the correct depth to give a true picture of the humidity in the concrete.

TECHNICAL DATA - HM 44 SET

HMP 44 Probe

	Relative humidity	
	Measurement range	0100 %RF
	Accuracy	
	090 %RH	±2 %RF
	90100 %RH	±3 %RF
	Typical long-term stability in air	better than
		1 %RH/yea
	Response time (90%) at +68°F (+	20°C) in still air 15
	Typical response time when the	concrete
	and the probe are in the same te	emperature
	(stabilized hole)	- 30 mir
	Humidity sensor	HUMICAP [®] 180
	Temperature	
	Measurement range	-4+140°F (-20+60 °C
	Accuracy at $+68^{\circ}F$ ($+20^{\circ}C$)	±0.7°F (±0.4 °C
	Temperature sensor	Pt 1000 IEC 751 1/3
	I	Class I
	HMI 41 Indicator	
	Maximum error caused by the in	
	humidity	±0.1 %RF
	temperature	±0.18°F (±0.1 °C
	Calculated quantities	dewpoint temperature
		absolute humidity
		wet bulb temperature
BACK to		mixing ratio
Table of	Resolution	0.1 %RH/0.1°F (0.1 °C
Contents	Power supply	4 batteries, type IEC LR (
	Battery operation time	
	(alkaline batteries)	72 h continuous use
To INDEX	Operating temperature range	-4+140°F (-20+60 °C
	Operating humidity range	0100 %RH
		non-condensing
HM 44	Storage temperature rang	-40+158°F (-40+70 °C
Price List	Display	two line LCI
	Housing material	ABS plastic
	Housing classification	IP 5
	The doning chasement of	(with connectors blocked


Meet EMC standards EN50081-1 and EN50082-2

Specifications subject to change without prior notice.

General

Cable length		0.3m
Operating tem	perature range of electronic	cs -4+140°F
		(-40+60 °C)
Housing mater	ial	ABS plastic
Housing classif	fication	NEMA 4 (IP 65)
Sensor protecti	ion memb	orane filter 17039HM
Sensor diamete	er	Æ12 mm
Bore hole dian	neter	16 mm
Measurement of	lepth	min. 30 mm
		max. 90 mm
Other probes t	o be used with the HMI ind	icator for the
measurement of	of humidity in materials:	
HMP 42	23.5 cm p	robe, diameter 4mm
HMP44L	as HMP44 but w	ith a 2.7 meter cable
HMP46	32 cm tube of stainless st	eel, diameter 12 mm

Installation of the HM 44 set.

HMP 44 probe

🏵 VAISALA

HMP 228 for Direct Measurement of Moisture in Oil

Vaisala's HMP 228 moisture transmitter enables fast and reliable on-line water detection in oil for various applications including lubrication systems and transformers. It also enables you to monitor functioning of a separator or a purifier for example.

FEATURES/BENEFITS

- HUMICAP sensor, 25+ years of proven field performance.
- Continuous moisture measurement in oil.
- Full measurement range of water activity 0...1.0
- Excellent long-term stability.
- Easy to install, calibrate, and maintain in the field.
- NIST traceable (certificate supplied).

CUT COSTS WITH MOISTURE MEASUREMENTS

Moisture in oil has a great affect on its environment. Water is the number one contaminant in lubrication systems and it causes corrosion especially during machine stoppages. Close detection of moisture prevents interruptions and helps cut maintenance costs. Thus the moisture content in lubrication systems should be kept as low as possible.

RUGGED AND VERSATILE

Vaisala's HMP 228 transmitters can be supplied with a cover which has a local display/keypad. The display shows the measurement readings and also functions as a user interface. A display/keypad transmitter is easy to use and configure with the menu-based commands of the built-in software.

The microprocessor-based transmitters measure water activity (aw) and temperature (T). The transmitters have two analog output channels and any two of the measured or calculated variables can be selected as output signals.

MEASURING WATER ACTIVITY

The primary measured variable in the HMP 228 is water activity (aw) which has several advantages compared to the traditionally measured variable, parts per million by weight (ppm_w).

The most important advantage is that the measured water activity value directly indicates whether the oil is too moist. Separate tables for different oil types are not needed, nor are estimates of oil temperature, age or conditions where it has been used.

INSTALLATION OPTIONS

The transmitter can be ordered with a ball valve set that enables insertion and removal of the moisture probe for calibration without the need to empty the oil system.

ALARM RELAYS

For applications where adjustable on/off alarm control is needed, the alarm relay option is the solution. Alarm relays include two SPCO (single pole change over) type relays with 8A / 230V contacts. They are easy to adjust with display keypad or through RS 232.

CONNECTORS

The transmitter has several different connector options for analog output signals, supply voltage (24 VAC/VDC) and RS lines (RS 232C/422/485). The connectors have the EMC and IP65 protection as well as easy screw connections.

CONNECTORS

- Transformer oil monitoring
- Lubrication systems monitoring (e.g. pulp and paper industry)
- Food oil processing
- Oil tank monitoring
- Mon-explosive fuel oil monitoring

TECHNICAL DATA - HMP 228

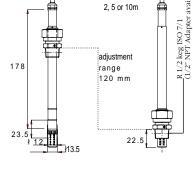
MEASURED VARIABLES

MEASURED VARIABLES	
Water activity	
Measurement range 01	
Accuracy (including nonlinearity and repeatability)	
when calibrated against salt solutions (ASTM E104-85):	
$\pm 0.02 (00.9) \qquad \pm 0.03 (0.91.0)$	
maximum achievable accuracy when calibrated against	
high-quality, certified humidity standards:	
Response time (90 %) at +68°F (+20 °C)	
in still oil (with stainless steel filter) 10 min.	
Sensor HUMICAP® K	
Temperature	
Typical accuracy of electronics±0.18°F (±0.1 °C)	
of electronics	
Sensor Pt 100 IEC 751 1/3 class B	
	_
· · · · · · · · · · · · · · · · · · ·	
8 1	
	_
Connections screw terminals for 0.5 mm ²	
wires (AWG 20), stranded	
1	
1	
	PR
Storage temperature range $-40158^{\circ}F(140+/0^{\circ}C)$	
Housing material G-AlSi12 (DIN 1725)	1
Housing classification NEMA 4 (IP 65)	
Bushing for 710 mm diameter cables (8 x 0.5 mm ²	
shielded cable)	
Sensor protection stainless steel filter (Ø 13.5 mm)	2
145	2
65 400	
	Water activity01Accuracy (including nonlinearity and repeatability)when calibrated against salt solutions (ASTM E104-85): $\pm 0.02 \ (00.9) \pm 0.03 \ (0.91.0)$ maximum achievable accuracy when calibrated against high-quality, certified humidity standards: $\pm 0.01 \ (00.9) \pm 0.02 \ (0.91.0)$ Response time (90 %) at +68°F (+20 °C)in still oil (with stainless steel filter) 10 min.SensorHUMICAP* KTemperatureMeasurement range-40+356 °F (-40+180 °C)Typical accuracy of electronics $\pm 0.18°F \ (\pm 0.1 °C)$ at +68°F (+20°C)Typical accuracy of electronics $\pm 0.18°F \ (\pm 0.005 °C/°C)$ of electronics 020 mA sensorPt 100 IEC 751 1/3 class BOUTPUTSTwo analog outputs 020 mA selectable and scaleable $420 \text{ mA}, 01 \text{ V}$ $05 \text{ V}, 010 \text{ V}$ Typical accuracy of analog $\pm 0.05 \% \text{ FS}$ output at +68°F (+20°C)Typical accuracy of analog $\pm 0.05 \% \text{ FS}/°C)$ serial outputRS 232CGENERALConnectionsscrew terminals for 0.5 mm²wires (AWG 20), stranded wires recommendedOperating voltage24 VDC/isolated 24 VAC, (2028 V)option115 VAC, 230 VACRecommended external load for current outputs> 10 kohm (to ground) $05 \otimes 010 V$ output> 2 kohm (to ground) $05 \otimes 010 V$ output> 20 kohm (to ground) $05 \otimes 010 V$ output> 20 kohm (to ground)<

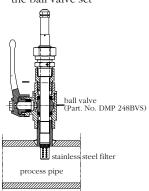
œ

Ø 6.5

萵 Ē


OPTIONS

Display cover	local display/keypad
	2 x 16 characters LCD
Cable length	2, 5 or 10 meters
Alarm relays*	2 pcs 8 A/230 V SPCO
	(single pole change over)
Connectors	
Serial modules	RS 485/422
	digital current loop
Power supply module*	
Operating voltage	115 VAC (93127 V)
	230 VAC (187253 V)
Connections	
input	screw terminal for
	1.5 mm ² wires (AWG 16)
output	screw terminal for
	0.5 mm ² wires (AWG 20)
A (1) 1 1 1 1 1	


* Simultaneous installation with alarm outputs and internal

power supply module is not possible. SERIAL INTERFACE MODULES

Module types	RS 485/422	
	digital current loop	
Connections	screw terminals for 0.5 mm ²	
	wires (AWG 20), stranded	
	wires recommended	
Assembly	plug-in module	
Number of devices on line		
RS 485/422	32	
digital current loop	6 (single loop)	
	9 (dual loop)	
Network cable type	twisted pair	
Network line length	1000 m max.	
Network data speed		
RS 485/RS422	9600 baud max.	
digital current loop	4800 baud max.	
HMP 228		
ROBE PUSHED DOWN PROBE	EUP	
t5.5cable length	ilable,	

Electronic housing

WAISALA HMP 231 "Smart" Humidity/Dewpoint Transmitter for High Performance Wall-Mount Applications

CUSTOMIZE YOUR INSTRUMENT

(Also see easy-to-use order form)

Vaisala's unique microprocessor design and modularity allow you to customize the HMP 231 at time of purchase:

- Selection of output parameters:
 - relative humidity absolute humidity
- dewpoint
- mixing ratio
- temperature wet bulb temperature - enthalpy
- Selection of:
 - local display and keypad
 - serial bus type (RS 232, 422/485 or digital current loop)
 - type of sensor protection (variety of filters available)

After purchase, you can directly program either via computer or local display and keypad:

- Units (metric or non-metric)
- The two output parameters corresponding to analog channels 1 and 2 (note: all output parameters selected by users are also available via serial output and display)
- Selection of the following output signals:
 - 4 to 20 mA

• 0 to 20 mA

- 0 to 1V
 0 to 5V
- 0 to 10V
- Scaling of measurement parameters and output signals (e.g. -10°C to +50°C corresponds to 1 to 5V)

RECOMMENDED FOR CHANGING ENVIRONMENTS

The HMP 231 is ideal for critical areas and applications where humidity, temperatures, or dewpoints tend to fluctuate. The unit is fully temperature compensated and provides unsurpassed accuracy over the entire temperature range of -40° F to $+140^{\circ}$ F (-40°C to $+60^{\circ}$ C).

NEW GENERATION HUMICAP®

The HMP 231 incorporates the latest generation of Vaisala's patented thin-film HUMICAP® sensor. Vaisala has pioneered the field of humidity since it developed the first HUMICAP® humidity sensor more than 20 years ago. Intensive in-house R&D has now produced a sensor which measures humidity more accurately (up to $\pm 1\%$) and reliably at temperatures higher than other sensors. The sensor's tolerance to high temperature; its ability to operate in condensing environments; its resistance to harsh chemicals and contaminants; and its excellent long-term stability are of great value in monitoring and controlling critical environments.

HMP 231 shown with optional display and keypad. Supplied with NIST traceable certificate of calibration

ON-SITE, ONE-POINT CALIBRATION

By utilizing a reference RH (or temperature) probe for comparison, routine maintenance and/or calibration of the HMP 231 can be performed on-site within a matter of minutes without disturbing transmitter operation. This unique one-point calibration feature will save down time, reduce service costs, and ensure high accuracy operation.

NEW FEATURE: RE-GAINING

This option makes the HMP 231 transmitter more accurate and stable in environments where high concentration of chemicals or cleaning agents are present. In re-gaining, activated by a software command, the sensor is returned to normal following the evaporation of the chemicals from the sensor.

TECHNICAL DATA - HMP 231

Measured Variables

wet bulb temperature

enthalpy

Relative Humidity	a a a a a a
Measurement range	0100%
Accuracy (including non-line	, , , , , , , , , , , , , , , , , , , ,
Maximum achievable when	8 8
quality, certified humidity sta	undards: ±1 %RH (090% RH)
	±2%RH (90100% RH)
When calibrated against	
salt solutions (ASTM E104-85	5) ± 2 %RH (090% RH)
	±3 %RH (90100% RH)
Response time (90%) at +68°	$F(+20^{\circ}C)$
in still air (w/sintered filter)	15s
Sensor	HUMICAP® K
Re-gaining sensor	HUMICAP® KC
Temperature	
Measurement range	-40+140°F (-40°+60°C)
Accuracy at +68°F (+20°C)	0.36°F (±0.2°C)
Sensor	PT 100 RTD IEC 751 1/3 Class B
Typical temperature	0.005°F/°F (0.005°C/°C)
dependence of electronics	
Calculated Variables	
Typical ranges:	
dewpoint temperature	-40+140°F (-40+60°C)
mixing ratio	0160 g/kg d.a.
absolute humidity	0160 g/m ³
	s

BACK to Table of Contents

To INDEX The accuracies of these calculated values are limited by the accuracies of the measured variables on which they are based, namely RH and T. The RH and T accuracies are stated above under Measured Variables.

HMP 231 Price List

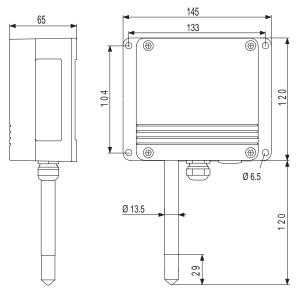
HMP 231 Dimensions in mm

-40...+460 kJ/kg (-17.2...+198.8 BTU/lb)

1/2" NPT conduit fitting adapter available

32°...+140°F (0...+60°C)

Outputs


Two analog outputs selectable	020 mA	01V
and scaleable	420 mA	05V
		010V
Serial output available	RS 232C, RS 48	85/422 or
-	digital cur	rent loop

General

General	
Connections	screw terminals for 0.5 mm ²
	wires (AWG 20)
Operating voltage	24 VDC/VAC (2028V)
Power consumption (standard c	onfiguration)
	100 mA maximum
Recommended external load	
for current outputs	< 500 ohm
Recommended external load	
for 01V ouput	> 2 kohm
Recommended external load	
for 05 and 010 V outputs	> 10 kohm
Operating temperature range	
for electronics	-40+140°F (-40+60°C)
Storage temperature range	40+158°F (-40+70°C)
Housing material	G-AlSi12 (DIN 1725)
Housing classification	NEMA 4 (IP 65)
Bushing	for 710 mm diameter
	cables (8 x 0.5 mm ²
	shielded cable)
Sensor protection	stainless steel sintered filter
(ø 13.3 mm)	PPS grid with stainless
	steel netting

Meets EC requirements on electromagnetic compatibility (10V/m to 3V/m) depending on the filter.

Specifications subject to change without further notice. HUMICAP[®] is a registered trademark of Vaisala.

VAISALA HMP 233 "Smart" Humidity/Dewpoint Transmitter for Measurement in Ducts and Small Spaces

CUSTOMIZE YOUR INSTRUMENT

(Also see easy-to-use order form) Vaisala's unique microprocessor design and modularity allow you to customize the HMP 233 at time of purchase:

- Selection of output parameters:
 - relative humidity absolute humidity
 - dewpoint
- mixing ratio
- temperature
- wet bulb temperature
- enthalpySelection of temperature range
- Selection of:
- cable length (2, 5, or 10 meters)
- local display and keypad
- serial bus type (RS 232, 422/485 or digital current loop
- type of sensor protection (variety of filter types available)
- operating voltage 24 VDC, 115 VAC, 230 VAC, 50/60 Hz

After purchase, you can directly program either via computer or local display and keypad:

- Units (metric or non-metric)
- The two output parameters corresponding to analog channels 1 and 2 (note: all output parameters selected by users are also available via serial output and display)
- Selection of the following output signals:
 - 4 to 20 mA 0 to 1V
 - 0 to 20 mA 0 to 5V
 - 0 to 10V
- Scaling of measurement parameters and output signals (e.g. -10°C to +80°C corresponds to 0 to 5V)

FOR DUCTS & SMALL AREAS

The HMP 233 has been engineered for use in particularly tight spaces, including chambers and incubators, as well as for typical low temperature duct applications. Its small sensor head with its small thermal mass is an advantage especially in situations where the sensor head must respond quickly to surrounding temperature changes. An optional kit consisting of aluminum flange, lead-through piece, and steel support bar enables installation of the HMP 233 in ducts, channels, and through walls.

ON-SITE, ONE-POINT CALIBRATION

By utilizing a reference RH or temperature probe for comparison, routine maintenance and calibration of the HMP 233 can be performed on site within a matter of minutes without disturbing transmitter operation. This unique one-point calibration feature will save down time, reduce service costs, and ensure high accuracy operation.

Incorporates Vaisala's next generation HUMICAP® sensor.

Cable available in lengths of 2 meters, 5 meters and 10 meters.

Supplied with NIST traceable certificate of calibration.

Small sensor head/small thermal mass for fast measurement in small spaces or chambers.

PPS grid with stainless steel netting and other filters are available for sensor protection.

NEW FEATURES:

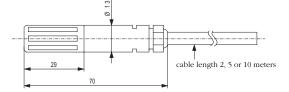
• Re-Gaining

This option makes the HMP 230 transmitters more accurate and stable in environments where high concentrations of chemicals or cleaning agents are present. With Re-Gaining, activated by a software command, the sensor returns to normal following the evaporation of the chemicals from the sensor.

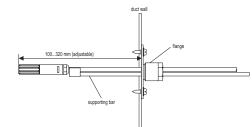
• Alarm Relays

For applications where adjustable on/off alarm control is needed, this option is the solution. These relays are easy to adjust with a display keypad or through RS 232.

TECHNICAL DATA - HMP 233


Measured Variables

Relative Humidity	
Measurement range	0100%
Accuracy (including non-lir	nearity and repeatability)
Maximum achievable when	calibrated against high quality,
certified humidity standards	5: $\pm 1\%$ RH (090% RH)
	±2%RH (90100% RH)
When calibrated against sal	t solutions
(ASTM E104-85)	±2%RH (090% RH)
	±3%RH (90100% RH)
Response time (90%) at +68	^{8°} F (+20 [°] C) in still air
(with sintered filter)	15 s
Sensor	HUMICAP® K
Re-Gaining Sensor	HUMICAP® KC
Temperature	
Measurement range	-40+176 °F (-40+80 °C)
0	OR
	-40+248°F (-40°+120°C)
Accuracy at $+68^{\circ}F(+20^{\circ}C)$	±0.36°F (±0.2°C)
(1200)	
Sensor	PT 100 RTD IEC 751 1/3 Class B
-	

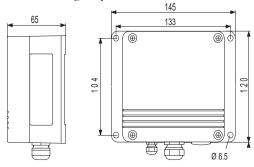

	calculated valiable.		
	Typical ranges:		
BACK to	dewpoint temperature	-40+212 °F (-40+100°C)	
Table of	mixing ratio	0500 g/kg d.a.	
Contents	absolute humidity	0600 g/m ³	
	wet bulb temperature	32212°F (0+100°C)	
	enthalpy -40	0+460 kJ/kg (-17.2+198.8 BTU/lb)	
To INDEX			

The accuracies of the calculated variables are limited by the accuracies of the measured variables on which they are based, namely RH and T. The RH and T accuracies are stated above under Measured Variables.

HMP 233 Maximum Temp Price List

Installation kit for duct mounting

Outputs


Outputs	
Two analog outputs select	table 020 mA 01V
and scaleable	420 mA 05V
	010V
Serial output available	RS 232C, RS 485/RS 42
	digital current loop
Alarm relays*	2 relays 8A/230VAC/24VDC SPCO**
General	
Connections	screw terminals for 0.5 mm ²
	wires (AWG 20)
Operating voltage	24 VDC/VAC (2028V)
	115 VAC/230 VAC option
Power consumption (stand	dard configuration)
	100 mA maximum
Recommended external lo	ad for current outputs < 500 ohm
Recommended external lo	ad for 01V ouput > 2 kohm
Recommended external lo	bad
for 05 and 010 V outp	puts > 10 kohm
Operating temperature ran	nge
for electronics	-40+140 °F (-40+60°C)
with display cover	32122 °F (050 °C)
with power supply unit	-40+113 °F (-40+45 °C)
Storage temperature range	e 40+158°F (-40+70°C)
Housing material	G-AlSi12 (DIN 1725)
Housing classification	NEMA 4 (IP 65)
Bushing	for 710 mm diameter
	cables (8 x 0.5 mm ²
	shielded cable
Sensor protection	PPS grid with stainless steel
(ø 13.3 mm)	netting recommended.
	Others, including sintered
	filter, are also available.

Meets EC requirements on electromagnetic compatibility (10V/m to 3V/m) depending on the filter

Specifications subject to change without further notice. HUMICAP[®] is a registered trademark of Vaisala.

HMP 233

1/2" conduit fitting adapter available

* Simultaneous installation with alarm outputs and internal power supply module is not possible.

** SPCO = single pole change over

🖻 VAISALA HMP 234 "Smart" Humidity/Dewpoint **Transmitter for High Performance in Pressurized Spaces**

CUSTOMIZE YOUR INSTRUMENT

(Also see easy-to-use order form)

Vaisala's unique microprocessor design and modularity allow you to customize the HMP 234 at time of purchase:

- Selection of output parameters:
- relative humidity
 - absolute humidity - mixing ratio
- dewpoint - temperature
- wet bulb temperature - enthalpy
- Selection of:
 - power supply (24 VDC/VAC; 115 VAC, 230 VAC)
 - local display and keypad
 - serial bus type (RS 232 or 485/422, or digital current loop)

After purchase, you can directly program either via computer or local display and keypad:

- Units (metric or non-metric)
- The two output parameters corresponding to analog channels 1 and 2 (note: all output parameters selected by users are also available via serial output and display)
- Selection of the following output signals:
 - 4 to 20 mA • 0 to 1V • 0 to 20 mA
 - 0 to 5V
- 0 to 10V Scaling of measurement parameters and output signals (e.g. -10°C to +80°C corresponds to 1 to 5V)

FOR PRESSURIZED SPACES/ CHANGING ENVIRONMENTS

The HMP 234's sensing head facilitates installation in pressurized processes to 10 MPa (1450 psi). This instrument is ideal for critical areas and applications where humidity, temperatures, or dewpoints tend to fluctuate. It is fully temperature compensated and provides unsurpassed accuracy over the entire temperature range -40°F to +356°F (-40°C to +180°C).

NEW FEATURES:

• Re-Gaining

This option makes the HMP 230 transmitters more accurate and stable in environments where high concentrations of chemicals or cleaning agents are present. With Re-Gaining, activated by a software command, the sensor returns to normal following the evaporation of the chemicals from the sensor.

Alarm Relays

For applications where adjustable on/off alarm control is needed, this option is the solution. These relays are easy to adjust with a display keypad or through RS 232.

HMP 234 shown with optional display and *keypad. Supplied with NIST traceable certificate* of calibration

NEXT GENERATION HUMICAP®

The HMP 234 incorporates the latest generation of Vaisala's patented thin-film HUMICAP® sensor. Vaisala has pioneered the field of humidity since it developed the first HUMICAP® humidity sensor more than 20 years ago. Intensive in-house R&D has now produced a sensor which measures humidity more accurately (up to $\pm 1\%$) and reliably at temperatures higher than other sensors. The sensor's tolerance to high temperature; its ability to operate in condensing environments; its resistance to harsh chemicals and contaminants; and its excellent long-term stability are of great value in monitoring and controlling critical environments.

ON-SITE, ONE-POINT CALIBRATION

By utilizing a reference RH (or temperature) probe for comparison, routine maintenance and/or calibration of the HMP 234 can be performed on-site within a matter of minutes without disturbing transmitter operation. This unique one-point calibration feature will save down time, reduce service costs, and ensure high accuracy operation.

TECHNICAL DATA - HMP 234

Measured Variables

	Relative Humidity	
	Measurement range	0100% RH
	Accuracy (including non-linearity and repeatability) Maximum achievable when calibrated against high	
	quality, certified humidity stanc	
	When calibrated against	
	salt solutions (ASTM E104-85)	±2%RH (090% RH)
		±3%RH (90100% RH)
	Response time (90%) at +68°F (+3	20ºC) in still air
	(with sintered filter)	15 s
	Sensor	HUMICAP® K
	Re-gaining Sensor	HUMICAP [®] KC
	Temperature	
	Measurement range	-40+356°F (-40°+180°C)
	Accuracy at +68°F (+20°C)	±0.36°F (±0.2°C)
	Sensor PT	100 RTD IEC 751 1/3 Class B
	Typical temperature dependence	e of electronics 0.005°F/°F
		0.005°C/°C
	Calculated Variables	
	Typical ranges:	
	dewpoint temperature	-40+212°F (-40+100°C)
DACK to	mixing ratio	0500 g/kg d.a.
BACK to	absolute humidity	0600 g/m ³
Table of	wet bulb temperature	32212°F (0+100°C)
Contents	enthalpy -40+460	kJ/kg (-17.2+198.8 BTU/lb)

The accuracies of these calculated values are limited by the accuracies of the measured variables on which they are based, To INDEX namely RH and T. The RH and T accuracies are stated above under Measured Variables.

HMP 234 Outputs **Price List**

outputs			
Two analog outputs selectable		020 mA	01V
and scaleable		420 mA	05V
			010V
Serial output available		RS 232C, RS 48	5/RS 422
		digital cur	rent loop
Alarm relays*	2 relays 8	8A/230VAC/24VDC	SPCO**

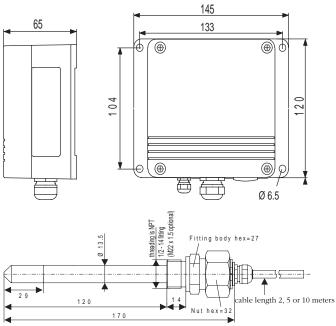
General

Connections	screw terminals for 0.5 mm ²
	wires (AWG 20) stranded
	wires recommended
Operating voltage	24 VDC/VAC (2028V)
Option	115 VAC, 230 VAC
Power consumption (standard configu	uration) 100 mA maximum
Recommended external load	
for current outputs	< 500 ohm

Recommended external load for 0...1V output > 2 kohm (to ground) Recommended external load for 0...5 and 0...10 V outputs > 10 kohm (to ground) Operating temperature range for electronics -40...+140°F (-40...+60°C) 32...+122°F (...+50°C) with display cover with power supply unit -40...+113°F (-40...+45°C) Storage temperature range -40...+158°F (-40...+70°C) Pressure range of HMP 234 0...10 MPa (0...100 bar) absolute pressure Housing material G-AlSi12 (DIN 1725) Housing classification NEMA 4 (IP 65) Bushing for 7...10 mm diameter cables (8 x 0.5 mm² shielded cable) Cable lengths 2, 5, or 10 meters Sensor protection sintered filter of

Meets EC requirements on electromagnetic compatibility (10V/m to 3V/m) depending on the filter.

stainless steel


Specifications subject to change without further notice. HUMICAP® is a registered trademark of Vaisala.

1/2" NPT conduit fitting adapter available.

HMP 234

(ø 13.5 mm)

* Simultaneous installation with alarm outputs and internal power supply module is not possible.

** SPCO = single pole change over

WAISALA HMP 235 "Smart" Humidity/Dewpoint Transmitter for Demanding High Temperature Applications

CUSTOMIZE YOUR INSTRUMENT

(Also see easy-to-use order form)

- Vaisala's unique microprocessor design and modularity allow you to customize the HMP 235 at time of purchase:
- Selection of output parameters:
- relative humidity
- absolute humidity
- dewpoint temperature
- mixing ratiowet bulb temperature
- enthalpy
- Selection of:
 - power supply type (24 VDC/VAC; 110 VAC, 220 VAC)
 - cable length (2, 5, or 10 meters)
 - local display and keypad
 - serial bus type (RS 232, RS 485/422 or digital current loop)
 - mounting flange type (aluminum or stainless steel)
 - type of sensor protection (variety of filter types available)

After purchase, you can directly program either via computer or local display and keypad:

- Units (metric or non-metric)
- The two output parameters corresponding to analog channels 1 and 2 (note: all output parameters selected by users are also available via serial output and display)
- Selection of the following output signals:
 - 4 to 20 mA 0 to 1V
 - 0 to 20 mA 0 to 5V
 - 0 to 10V
- Scaling of measurement parameters and output signals (e.g. -10°C to +80°C corresponds to 1 to 5V)

NEW FEATURES:

• Re-Gaining

This option makes the HMP 230 transmitters more accurate and stable in environments where high concentrations of chemicals or cleaning agents are present. With Re-Gaining, activated by a software command, the sensor returns to normal following the evaporation of the chemicals from the sensor.

• Alarm Relays

For applications where adjustable on/off alarm control is needed, this option is the solution. These relays are easy to adjust with a display keypad or through RS 232.

HMP 235 shown with optional display and keypad. Supplied with NIST traceable certificate of calibration. Operating temperature range of -40°F to +356°F (-40°C to +180°C). Note: Sensor can withstand temperatures up to 392°F (200°C) for short periods. Cable available in lengths of 2 meters, 5 meters and 10 meters.

Optional mounting flange available in either stainless steel or aluminum.

FULL TEMPERATURE COMPENSATION

The HMP 235 transmitter provides accurate measurement with full temperature compensation over the entire humidity range (0 to 100% RH) at temperatures from -40°F to +356°F (-40°C to +180°C). Additionally, the stainless steel sensor head can withstand temperatures up to 392°F (200°C) for short periods, and can be positioned directly in the environment being measured: ducts, kilns, and dryers, for example. The sensor is connected to the transmitter via either a 2, 5, or 10 meter cable, allowing the electronics and housing to be located outside of the hostile environment.

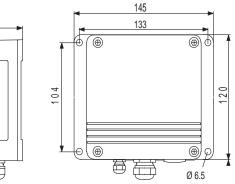
ON-SITE, ONE-POINT CALIBRATION

By utilizing a reference RH (or temperature) probe for comparison, routine maintenance and/or calibration of the HMP 235 can be performed on site within a matter of minutes without disturbing transmitter operation. This unique one-point calibration feature will save down time, reduce service costs, and ensure high accuracy operation.

TECHNICAL DATA - HMP 235

Measured Variables

Relative Humidity	
Measurement range	0100%
Accuracy (including non-lin	earity and repeatability)
Maximum achievable whe	en calibrated against high
quality, certified humidity	standards: ±1%RH (090% RH)
	±2%RH (90100% RH)
When calibrated against	
salt solutions (ASTM E104-	-85) ±2%RH (090% RH)
	±3%RH (90100% RH)
Response time (90%) at +68°	5°F (+20°C)
in still air (with sintered filte	er) 15 :
Sensor	HUMICAP® F
Re-gaining sensor	HUMICAP [®] KO
Temperature	
Measurement range	-40+356°F (-40°+180°C
Accuracy at $+68^{\circ}F(+20^{\circ}C)$	0.36°F (±0.2°C
Sensor	PT 100 RTD IEC 751 1/3 Class I
Typical temperature	0.005°F/°F (0.005°C/°C)
dependence of electronics	
Calculated Variables	
Typical ranges:	
dewpoint temperature	-40+212°F (-40+100°C)
mixing ratio	0500 g/kg d.a
absolute humidity	0600 g/m
wet bulb temperature	32°F (0+100°C)
enthalpy -40	+460 kJ/kg (-17.2+198.8 BTU/lb
The accuracies of the calcula	ated values are limited by the
accuracies of the measured	quantities on which they are


based, namely RH and T. The RH and T accuracies are stated

To INDEX

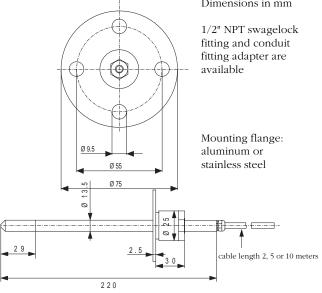
BACK to Table of Contents

HMP 235 Price List HMP 235

above under Measured Variables.

* Simultaneous installation with alarm outputs and internal power supply module is not possible.

** SPCO = single pole change over


Outputs

Two analog outputs sele and scaleable	ctable	020 mA 420 mA	01V 05V
Serial output available		RS 232C, RS 48	
Alarm relays*	2 relays	or digital cur 8A/230VAC/24VDC	1

General

General	
Connections	screw terminals for 0.5 mm ²
	wires (AWG 20)
Operating voltage	24 VDC/VAC (2028V)
Power consumption (standard	configuration)
	100 mA maximum
Recommended external load	
for current outputs	< 500 ohm
Recommended external load	
for 01V ouput	> 2 kohm
Recommended external load	
for 05 and 010 V outputs	> 10 kohm
Operating temperature range	
for electronics	-40+140°F (-40+60°C)
with display cover	32+122 °F (0+50 °C)
with power supply unit	-40+113 °F (-40+45 °C)
Storage temperature range	-40+158°F (-40+70°C)
Housing material	G-AlSi12 (DIN 1725)
Housing classification	NEMA 4 (IP 65)
Bushing	for 710 mm diameter cables
	(8 x 0.5 mm ² shielded cable)
Cable lengths	2, 5, or 10 meters
Sensor protection	stainless steel sintered filter
(ø 13.5 mm) PPS	6 grid with stainless steel netting
Meets EC requirements on elec	ctromagnetic compatibility (10V/
m to 3V/m) depending on the	filter.

Specifications subject to change without further notice. HUMICAP[®] is a registered trademark of Vaisala. Dimensions in mm

34

WAISALA HMP 238 "Smart" Humidity/Dewpoint Transmitter with Adjustable Probe Head for Ease of Installation into Pressurized Spaces

FEATURES/BENEFITS

- Latest generation of HUMICAP® sensor
- Withstands and recovers from condensation
- Adjustable probe head ideal for "hot tapping"
- East to install, calibrate and maintain
- User-programmable, versatile and easy to use
- NIST traceable (certificate supplied)
- Optional alarms relays, sensor re-gaining, local display, sampling systems

CUSTOMIZE YOUR INSTRUMENT

Vaisala's unique microprocessor design and modularity allow you to customize the HMP 238 at time of purchase:

- Selection of output parameters:
- relative humidity absolute humidity
- dewpoint mixing ratio
- temperature enthalpy
- wet bulb temperature
- Selection of:
- Alarm outputs
- Local display and keypad
- Serial bus type (RS 232, 422/485 or digital current loop)
- Power supply type (24/VDC, VAC; opt. 115 VAC, 230 VAC)

After purchase, program directly via computer, or local display and keypad:

- Units (metric or non-metric)
- The two output parameters corresponding to analog channels 1 and 2 (note: all output parameters selected by users are also available via serial output and display)
- Selection of the following output signals:
 - 4 to 20 mA 0 to 1V
- 0 to 20 mA 0 to 5V 0 to 10V
- Scaling of measurement parameters and output signals (e.g. -10°C to +50°C corresponds to 1 to 5V)

The HMP 238 incorporates the latest generation of Vaisala's patented thin-film HUMICAP[®] sensors. Vaisala has pioneered the field of humidity since it developed the first HUMICAP[®] humidity sensor more than 25 years ago. Intensive in-house R&D produced a sensor which measures humidity more accurately (up to $\pm 1\%$) and reliably at temperatures higher than other sensors. The sensor's tolerance to high temperature; its ability to operate in condensing environments; its resistance to harsh chemicals and contaminants; and its excellent long-term stability are of great value in monitoring and controlling critical environments.

PRESSURIZED ENVIRONMENTS WITH VARYING HUMIDITY/DEWPOINTS

The HMP 238 probe head withstands pressure up to 600 psig. The probe depth may be adjusted under pressures up to 150 psig. Under greater pressures it becomes too difficult to slide the probe and tighten the hex lock nut. This versatile probe can be installed through a process wall, inserted through a ball valve (hot tapping), on the back side of a ball valve (leak position), or with a sample system for additional filtration or cooling.

THE HMP 238 "HOT TAPPING" FEATURE

"Hot tapping" is used to enter a system without exposing the process to ambient air, venting process gas, or shutting the process down. The HMP 238 probe head, designed with an adjustable locking hex nut, is hand screwed onto an existing ball valve assembly that is already secured to the process pipe/ wall. Hand tighten the hex nut in the up position, open the ball valve, adjust the probe to the proper depth in the down position, and then tighten the hex nut with a wrench. The reverse procedure is followed when removing the probe from the process. 'Hot tapping" can be carried out in process pressures up to 150 psig. It is ideal for servicing and making portable measurements on compressed air lines without shutting the process down.

ON-SITE, ONE-POINT CALIBRATION

By utilizing a reference RH (or temperature) probe for comparison, routine maintenance and/or calibration of the HMP 238 can be performed on site within a matter of minutes. This unique one-point calibration feature will save down time, reduce service costs, and ensure high accuracy.

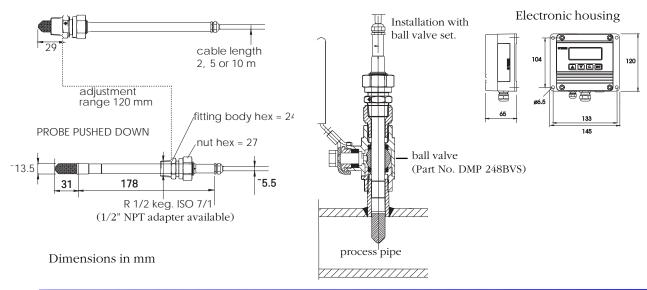
TECHNICAL DATA - HMP 238

Measured Variables

Relative Humidity	
Measurement range	0100%
Accuracy (including non-line and repeatability) Maximum achievable when against high quality,	-
certified humidity standards	5: ±1%RH (090% RH)
	±2%RH (90100% RH)
When calibrated against	
salt solutions (ASTM E104-8	$\pm 2\% RH (090\% RH)$
	±3%RH (90100% RH)
Response time (90%) at +68°	F (+20°C)
in still air (with sintered filter)) 15 S
Sensor	HUMICAP® K
Re-gaining sensor	HUMICAP [®] KC
Temperature	
Measurement range	-40°+356°F (-40°+180°C)
Accuracy at +68°F (+20°C)	±0.36°F (±0.2°C)
Sensor	PT 100 RTD IEC 751 1/3 Class B
Typical temperature	0.005°F/°F (0.005°C/°C)
dependence of electronics	

Calculated Variables

	Typical ranges:	
	dewpoint temperature	e -40°+212°F (-40°+100°C)
BACK to	mixing ratio	0500 g/kg d.a.
Table of	absolute humidity	0600 g/m3
Contents	wet bulb temperature	32+212°F (0+100°C)
	enthalpy	-40+460 kJ/kg (-17.2+198.8 BTU/lb)


To INDEXThe accuracies of the calculated values are limited by the
accuracies of the measured quantities on which they are
based, namely RH and T. The RH and T accuracies are stated
above under Measured Variables.

Price List PROBE UP

HMP 238

Outputs			
Two analog outputs selectab	le 020 mA 01V		
and scalable	420 mA 05V		
	010V		
Serial output available	RS 232C, RS 485/RS 422		
	or digital current loop		
	s 8A / 230VAC/24VDC SPCO		
General			
Connections	screw terminals for 0.5 mm2		
	wires (AWG 20)		
Operating voltage	24 VDC/VAC (2028V)		
Power consumption (standar	_		
	100 mA maximum		
Recommended external load			
for current outputs	< 500 ohm		
Recommended external load			
for 01V output	> 2 kohm		
Recommended external load			
for 05 and 010 V outputs	> 10 kohm		
Operating temperature range			
for electronics	-40°+140°F (-40°+60°C)		
with display cover	32°+122°F (0°+50°C)		
with power supply unit	-40°+113°F (-40°+45°C) -40°+158°F (-40°+70°C)		
Storage temperature range	-40°+138°F (-40°+/0°C) G-AlSi12 (DIN 1725)		
Housing material Housing classification	NEMA 4 (IP 65)		
Bushing	for 710 mm diameter		
Dushing	cables (8 x 0.5 mm2		
	shielded cable		
Cable lengths	2, 5, or 10 meters		
Sensor protection	stainless steel sintered filter		
(ø 13.5 mm)	PPS grid with stainless steel		
(» 19.9 mm)	netting		
	inciting		

Meets EC requirements on electromagnetic compatibility (10V/m to 3V/m) depending on the filter.

🏶 VAISALA

HMP 140 Series Humidity and Temperature Transmitters

FEATURES/BENEFITS

- HUMICAP[®] sensor is resistant to dust & most chemicals
- 0...100 %RH measurement
- -40...+140 °F (-40...+60 °C) temperature measurement
- Temperature compensation
- 0...20 mA, 0...1 V, 0...5 V and 0...10 V outputs selectable
- IP 65 housing protects against dust & sprayed water
- One-point electronic calibration
- Optional local display

VERSATILE FAMILY OF TRANSMITTERS

The HMP 140 series includes the wall-mounted HMP 141, the HMP 142 for installation in ducts or channels and the HMP 143, which has a sensor head that can be installed directly in the process environment being measured. The HMP 143's cable can be extended by the user to a total of 100 meters in length.

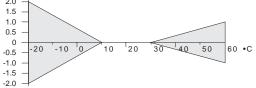
A novel feature of the 140 series duct unit is the ability to remove the electronics without disassembling the unit from the duct.

HIGH PERFORMANCE SENSOR

The 140 series feature Vaisala's HUMICAP® humidity sensor, known for its accuracy, reliability, and long-term stability. Resistant to dust and most chemicals, the HUMICAP® is a great asset in industrial environments especially where there is risk of dew or particulate contamination.

QUICK ON-SITE CALIBRATION

These transmitters can be calibrated easily in minutes without disturbing operation, using Vaisala's portable calibrators. If using saturated salt solutions, the electronics of the transmitters can be disconnected easily without disconnecting the cable.



TECHNICAL DATA - HMP 140 SERIES

Relative Humidity

Measurement range	0100 %RH
Accuracy (including non-linearity	
and repeatability) when cali-	
brated against salt solutions	
(ASTM E104-85):	
090 %RH	±2 %RH
90100 %RH	±3 %RH
Temperature dependence	
△ %RH	
2.0 -	

Response time (90%) at +68°F (+20 °C)	
in still air	15 s
Sensor	HUMICAP® 180

Temperature

Dimensions in mm

Measurement range	-40+140 °F (-40+60 °C)
Typical accuracy	
at +68°F (+20 °C)	±0.36°F (±0.2 °C)
14°F104°F (-10+40 °C)	±0.54°F (±0.3 °C)
-40°F140°F (-40+60 °C)	±0.72°F (±0.4 °C)
Sensor	Pt 1000
	IEC 751 Class B

100

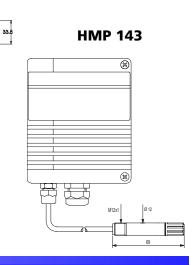
To INDEX

BACK to Table of Contents

HMP 141 Price List

HMP 142 Price List

HMP 143 Price List


HMP 141

General

935 VDC/924 VAC (depending
on the selected output range)
610 mA + output current
three screw terminals for
0.51.5 mm ² wires
(AWG 1520),
stranded wires recommended
01 V, 05 V,
010 V
module 020mA, 420mA
max. 500 ohm
min. 2 k ohm (to ground)
min 5 k ohm (to ground)
min. 10 k ohm (to ground)
ige
-4+140 °F (-20+60 °C)
+32122 °F (0+50 °C)
-40+176 °F (-40+80 °C)
0100 %RH
for Ø 710 mm cables
membrane filter, part no.
17039mm
plastic grid, part no.
17038mm
2.5 m
100 m
ABS plastic
NEMA 4 (IP 65)

Specifications subject to change without prior notice. HUMICAP[®] is a registered trademark of Vaisala.

Protection lid

WAISALA HMT 360 Intrinsically Safe Humidity and Dewpoint Transmitter with Interchangeable Probes

CONFORMS WITH HIGH INTERNATIONAL STANDARDS

The HMT 360 transmitter has been rigorously tested and conforms with all requirements for intrinsically safe instruments and EMC. It is the ideal solution for controlling humidity and dewpoint in potentially explosive applications.

SELECT THE CONFIGURATION TO SUIT YOUR APPLICATION

True flexibility is made possible by microprocessorbased electronics and a variety of options and accessories. Customers can specify the configuration of the HMT 360 transmitter when ordering, but if required, they can also easily make changes to the configuration in the field. In addition to the five probe types, there is a choice of:

- Local display
- Three different humidity sensors
- Two analog output channels
- (one standard, one optional)
- LonWorks® interface module

The transmitter measures relative humidity and temperature, and calculates various humidity quantities (dewpoint, wet bulb temperature, mixing ratio, and absolute humidity). All these features make the HMT 360 transmitter versatile and ensure its suitability for almost any application.

INTERCHANGEABLE PROBES

The HMT 360 intrinsically safe transmitters are based on a totally new approach for ease of operation, installation and maintenance. This new concept of modularity includes five different types of interchangeable probes, enabling fast and easy removal or reinstallation when required.

Calibration of the probes, for example, can be performed in a laboratory and the probe then easily replaced in the field without removing the transmitter.

SAFE INSTALLATION AND PERFORMANCE IN MOST HAZARDOUS AREAS

In hazardous environments, safe and reliable operation is a prerequisite for any instrument. Vaisala knows the humidity business and understands your need for accurate and trouble-free humidity control. In these environments, safety is of utmost importance.

HMT 360 Transmitter shown with selection of interchangeable probes.

Our new HMT 360 transmitter is rugged and employs the latest sensor technology. It operates safely and reliably even in Division 1.

The HMT 360 transmitter's proven performance and technology conform with the most rigorous international standards. And, as future standards change to reflect new knowledge, you can be confident that the HMT 360 series will conform to these standards as well.

The HMT 360 transmitters are an investment for the future; their longevity combined with trouble-free operation ensure a long term solution for your hazardous humidity and dewpoint monitoring requirements.

OPTIMIZED SENSORS

In addition to Vaisala's standard HUMICAP® Sensor, two application specific sensors are available:

- For environments with high concentrations of hydrogen (H₂)
- For environments with high concentrations of demanding chemicals.

TECHNICAL DATA - HMT 360 INTRINSICALLY SAFE HUMIDITY AND DEWPOINT TRANSMITTERS WITH INTERCHANGEABLE PROBES

MEASURED VARIABLES

Relative humidity measurem	ent range 0 - 100 %RH	
Accuracy (including non-line	earity and repeatability)	
when calibrated against:		
high quality, certified		
humidity standards	±1 %RH (090 %RH)	
-	±2 %RH (90100 %RH)	
salt solutions	±2 %RH (090 %RH)	
(ASTM E104-85)	±3 %RH (90100 %RH)	
Response time (90%) at +68°F (+20°C) in still air		
(with sintered filter)	15 seconds	
Sensors:		
HUMICAP®180	for typical applications	
HUMICAP [®] 180J	for hydrogen applications	
HUMICAP®180L f	or applications with a demanding	
	chemical environment	
(max. 1	104°F (+40 °C) in high humidities)	
Temperature	_	
Measurement ranges:		

Measurement ranges:	
HMP361 probe	-40140°F (-40+60 °C)
HMP363 probe	-40°F248°F (-40+120 °C)
HMP364/365/368 probes	-40356°F (-40+180 °C)
Typical accuracy of electroni	cs
at +68°F (+20°C)	±0.18%F (±0.1 °C)
Typical temperature depende	ence
of electronics	0.005°F/°F (0.005 °C/°C)
Sensor	Pt 1000 RTD 1/3 Class B IEC 751

BACK to Table of

Contents

Table of Contents	CALCULATED VARIABLES (depends on model type) Typical ranges With HMP361 probe	
To INDEX	dewpoint temperature mixing ratio absolute humidity	-40°F140°F (-40+60 °C) 0160 g/kg d.a. 0160 g/m ³
HMT 360	wet bulb temperature	32140°F (0+60 °C)

Price List With HMP363, HMP364, HMP365 & HMP368 probes

dewpoint temperature	-40212F °(-40+100 °C)
mixing ratio	0500 g/kg d.a.
absolute humidity	0600 g/m ³
wet bulb temperature	0212°F (0+100 °C)

OUTPUTS

Two analog outputs	Two wire 420 mA
(one standard, one optional)	
Typical accuracy of analog	
outputs at +20 °C	±0.05% FS
Typical temperature dependence	e
of analog outputs	0.003%/°F FS(0.005% /°C) FS
Optional LonWorks® channel	
RS232C serial output for service	use connector type RJ45

CLASSIFICATION WITH CURRENT OUTPUTS

Cenelec (76/117/EEC) U.S.A., Canada, Japan and Australia LONMARK[™] Safety factors with current outputs

EEx ia IIC T5 VTT No. Ex-99.E.005X

Ci=48nF, Li=22mH

Pending

Ui=28 V, Ii=100 mA,

LonWorks[®] MODULE

Connections	screw terminals, 0.332.0 mm ²
wires (AWG 14-22)	
Connection type	XF78 (TP78)
Communication speed	78.125 kbit/s
Maximum cable length	
with dual terminated bus top	pology 1000 m
with free topology (incl. Terr	minators) 300 m
Application power	two-wire power & signal
Signalling form (unipolar)	IS node draws 20 mA to
	transmit
LonWorks [®] module classifie	cation
EU (76/117/EEC)	Eex ia IIC T4
VTT No. Ex-99.E.006X	
Safety factors with LonWorks®	module Ui=24 V, Ii=225 mA,
	Pi=1.2 W, Ci= 0 F, Li=22mH
GENERAL	, ,
Operating voltage	1228 V
with serial port (service mod	
Connections	screw terminals, 0.332.0mm ²
connections	wires (AWG 14-22)
Cable bushing	Pg11 (512mm)
Conduit fitting	Pg11/NPT 1/2"-14
Operating temperature range f	_
electronics	-40140°F (-40+60 °C)
with display and/or with	
LonWorks [®] module	-4140°F (-20+60 °C)
Storage temperature range	-40158°F (-40+70 °C)
Housing material	G-A1Si 10 Mg (DIN 1725)
Housing classification	NEMA 4 (IP 65)
Housing dimensions	164 x 115 x 62mm
Housing weight	950g
Fully electromagnetically com	
according to standards	EN50081-1 and EN50082-2
according to standards	En 90001-1 and En 90082-2
OPTIONS AND ACCESSO	DRIES

JPTIONS AND ACCESSORIES

Display	two-line LCD
character size (1st line/2nd line)	12 mm/10 mm
Calculated output variables	dewpoint temperature
	mixing ratio
	absolute humidity
	wet bulb temperature
Additional analog output	420 mA
LonWorks [®] channel	XF78 (TP78)
Duct mounting installation kit	
(for HMP363 sensor head)	Order code: HMP233FAH
Installation flange (for HMP365 ser	isor head)
aluminium	Order code: HMP235FA
stainless steel	Order code: HMP235 FS
Ball valve set (for HMP368	
sensor head)	Order code: DMP248VS
pressure range at 68°F (+20 °C)	070 bar
Serial interface cable for PC	
connectors RJ45 - D9 female	Order code: 19446ZZ

PARTNER 40

Probes for HMT 360 Intrinsically Safe Humidity and Dewpoint Transmitter

HMT 360 transmitter shown with HMP 361 probe.

Price Lists: HMT 360 Probes HMT 361 HMT 363

The HMT 360 transmitter can be ordered with any one of the following five probe options:

HMP 361 - Wall mount HMP 363 - Confined spaces HMP 364 - High pressure HMP 365 - High temperature

HMP 368 - Pressurized pipelines

Each probe design offers unique advantages for various applications.

The HMT 360 transmitter with the HMP 361 probe, shown to the left, together are referred to as: the HMT 361.

HMP 361 - Wall Mount Probe

Temperature range $-40^{\circ}...+248^{\circ}F(-40^{\circ}...+120^{\circ}C)$

Sensor protection options:

PPS grid with steel netting filter Stainless steel sintered filter PPS gird Stainless steel filter

The HMP 361 probe together with the HMT 360 transmitter are referred to as: the HMT 361.

HMP 363 - Probe for Confined Spaces

Temperature range $-40^{\circ}...+248^{\circ}F(-40^{\circ}...+120^{\circ}C)$

Sensor head cable length Sensor head cable diameter

Sensor protection options:

PPS grid with steel netting filter Stainless steel sintered filter PPS gird Stainless steel filter

2, 5, or 10 meters

5.5mm

The HMP 363 probe together with the HMT 360 transmitter are referred to as: the HMT 363.

E-MAIL: incsales@vaisala.com

FAX: (781) 933-8029 Access catalog on-line at: www.vaisala.com/inc/ssdcat

PROBES FOR HMT 360 INTRINSICALLY SAFE HUMIDITY AND DEWPOINT **TRANSMITTER (CON'T.)**

HMP 364 - Probe for High Pressure

Temperature range	-40°+356°F (-40°+180°C)
Pressure range	010 Mpa (0100 bar)

2, 5, or 10 meters Sensor head cable length Sensor head cable diameter Sensor protection options:

> PPS grid with steel netting filter Stainless steel sintered filter PPS gird Stainless steel filter

5.5mm

The HMP 364 probe together with the HMT 360 transmitter are referred to as: the HMT 364.

BACK to Table of Contents

To INDEX

Price Lists: HMT 364

HMT 365

HMT 368

HMP 365 - Probe for High Temperatures

Temperature range	-40°+356°F (-40°+180°C)

Sensor head cable length Sensor head cable diameter

Sensor protection options:

PPS grid with steel netting filter Stainless steel sintered filter PPS gird Stainless steel filter

2, 5, or 10 meters

5.5m

The HMP 365 probe together with the HMT 360 transmitter are referred to as: the HMT 365.

HMP 368 - Probe for Pressurized Pipe Lines T

Temperature range	-40°+356°F (-40°+180°C)
Pressure range	04 Mpa (040 bar)
Sensor head cable lengt	h 2, 5, or 10 meters
Sensor head cable diam	eter 5.5m

Sensor protection options:

PPS grid with steel netting filter Stainless steel sintered filter PPS gird Stainless steel filter

The HMP 368 probe together with the HMT 360 transmitter are referred to as: the HMT 368.

HMP 260 EX Intrinsically Safe Humidity Transmitter

FEATURES

- Meets classification EEx ia IIC (T6) Classes I, II, III, Div 1, Groups A-G
- Temperature compensation
- Full 0 to 100% RH measurement
- Includes zener barriers enclosed in separate NEMA 4 housing

FOR USE IN HAZARDOUS LOCATIONS

An intrinsically-safe humidity transmitter, the HMP 260 EX is designed for use in potentially explosive environments. Hospitals, chemical and petrochemical industries, as well as many processing industries should use this transmitter where substances, such as solvents and explosive dusts, present such a hazard. The HMP 260 EX can even be used in hydrogen, one of the most easily ignitable gases. Its classification means that it can be used in areas where an explosive gas atmosphere is continuously present, or is present for long periods of time; and that protection is maintained with up to two components or other faults. When used in environments where explosion protection is essential, the HMP 260 EX must always be connected to the power supply through the zener barriers.

FAST AND RELIABLE

Fast, stable, and accurate, the HMP 260 EX has been fully temperature compensated over the entire measurement range of 0...100% RH in temperatures from -4 to +140 °F (-20°C to +60°C). It utilizes Vaisala's HUMICAP® capacitive thin-film humidity sensor which has proven successful in many demanding industrial applications with accuracies of up to $\pm 2\%$ RH. Furthermore, the sensor is not affected by most chemicals and dust particulates.

HMP 260 EX Complete with barriers enclosed in separate NEMA 4 housing.

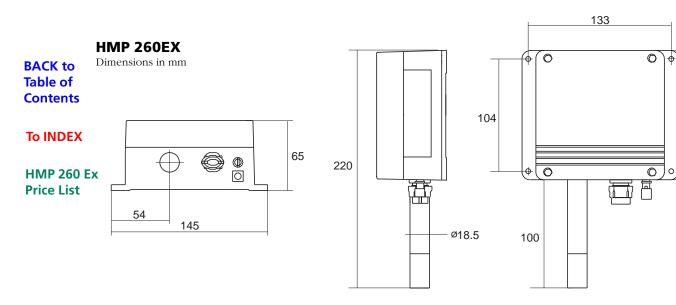
Approved

TECHNICAL DATA - HMP 260 EX

General

Weight:

Classification:	EEx ia ll C T6	
	Classes I,II,III, Div.1,	
	Groups A,B,C,D,E,F,G	
Maximum supply voltage:	26 VDC	
Current consumption:	420 mA	
Operating temperature		
range:	-4+140°F (-20+60°C)	
Storage temperature range:	-40+167°F (-40+75°C)	
Housing material:	Cast AISl ₁₂ (DIN 1725)	
Housing classification:	NEMA4 (lP 65)	
Sensor head:	AlMgsi ₁ (DIN 1725)	
Sensor protection:	sintered filter 216 µm	
	(part no. 6686)	
Connections:	screw terminal 0.51.5	
	mm ²	
Cable bushing:	for 5.510 mm cables	
Grounding connection:	DFG/1 EN screw terminal	
	(DIN EN 50014/19)	
Barrier:	Stahl # 9001/51-280-110-14	


Relative Humidity

0 100% RH
±2%RH (090%RH)
±3%RH (90100% RH)
±0.02%RH/°F (±0.04%RH/°C)
420 mA (load
0250 ý)
1000 ý
better than 1%RH per year
(typical)
0° C) 15 s with sintered filter
Capacitive thin-film
HUMICAP [®] H

In explosive areas the HMP 260EX must be connected to the power supply through a zener barrier.

120

Specifications subject to change without prior notice.

925 g

60/70 Series Duct & Wall-Mount Humidity & Temperature Transmitters for HVAC/EMCS

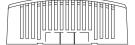
FEATURES/BENEFITS

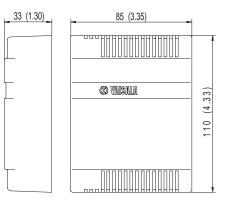
- Full 0...100 %RH measurement
- True two-wire transmitters with 4...20 mA loop powered output (HMD 60 and HMW 60)
- Selectable signal output of 0...1 V, 0...5 V or 0...10 V (HMD 70 and HMW 70) with optional current module also 0...20 mA (HMD 70)
- Electromagnetically compatible
- Temperature compensated
- Excellent long-term stability
- Up to ± 2 %RH accuracy
- HUMICAP[®] humidity sensor for excellent accuracy and long-term stability, negligible hysteresis and resistance to dust and most chemicals.
- ±2% RH accuracy (0...90%) ±3% RH accuracy (90...100%)
- NEMA 4 housing (duct unit only)
- Also available as temperature-only transmitters HMD/W 60T/70T

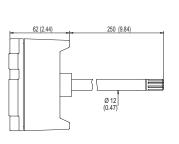
OPTIMAL ENERGY MANAGEMENT

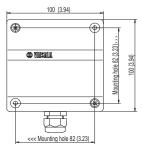
The duct and wall-mounted HMD/W 60 and HMD/W 70 transmitters are designed for monitoring relative humidity and temperature in building energy management systems. The combination of high accuracy, stability and reliable operation makes these products the ideal choice for demanding energy management applications.

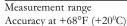
The duct mount transmitters can also be used in many industrial humidity monitoring applications, where their stability and resistance to chemicals and dust are of great value.


A novel feature of these duct mount transmitters is the ability to remove the electronics without disassembling the unit from the duct.


The HMD/W 60 and HMD/W 70 transmitters are available in three models: U for humidity measurement-only, Y for humidity and temperature measurement, and T for temperature only.


FAST, ON-SITE CALIBRATION

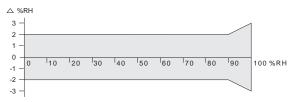

The accuracy of the transmitters is simple to check using the HMI 41 humidity calibrator. The calibration can be done in seconds with a single potentiometer without disturbing operation. This saves hours of maintenance time and ensures high system accuracy.



TECHNICAL DATA - HMD/W 60 AND 70 SERIES

60 Series: 2-wire, 4 to 20 mA output		
wall mount	RH only	HMW60U
	RH & T	HMW60Y
duct mount	RH only	HMD60U
	RH&T	HMD60Y
70 Series: 3-wire, varial	ole voltage output	
wall mount	RH only	HMW70U
	RH & T	HMW70Y
duct mount	RH only	HMD70U
	RH & T	HMD70Y

Relative Humidity (duct-mount models)



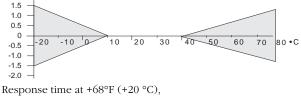
0...100 %RH*

0...95 %RH*

⁷100 %RH

90

Relative Humidity (wall-mount models)

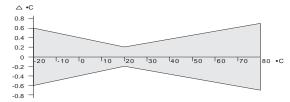

Measurement range Accuracy at +68°F (+20 °C) **BACK to** \triangle %RH **Table of** 3 **Contents** 2 1 0 10 20 30 40 50 60 70 80 **To INDEX** -1 -2

Price Lists:

Duct/Wall Temperature dependence △ %RH 2.0 -

-3 —

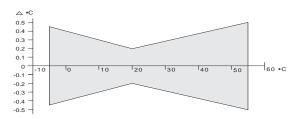
Temp Only


90% response 15 s (with membrane filter) Sensor HUMICAP® 180

* Output signal corresponds to 0-100%RH

Meets EMC standard EN50081-1 and EN50082-1. Specifications subject to change without notice. HUMICAP is a registered trademark of Vaisala.

Temperature (Y-models only)


Linearity	better than 0.18°F (0.1 °C)
,	
Sensor	PT 1000 IEC 751 class B
(HMD 60Y and HMD 70Y)	
Measurement range	-4+176 °F (-20+80 °C)
Accuracy	

(HMW 60Y and HMW 70Y)

Measurement range Accuracy

+23...131°F (-5...+55 °C)

General - 60 series

Supply voltage	1035 VDC (R ₁ = 0 ohm)
	2035 VDC (R _L = 500 ohm)
Output signal	420 mA

General - 70 Series

Supply voltage range depends on the selected output signal

	DC	AC
01V	1035 V	924 V
05 V	1435 V	1224 V
010 V	1935 V	1624 V
$020 \text{ mA} (R_{t} = 0 \text{ ohm})$	1035 V	$1124 V^{**}$
$020 \text{ mA} (R_{L} = 500 \text{ ohm})$	2035 V	1724 V**
** HMD models only.		

General

Operating temperature range	
electronics	+23+131°F (-5+55 °C)
sensor head (duct mount)	-4+176°F (-20+80 °C)
Storage temperature range	-40+176°F (-40+80 °C)
Housing	
sensor head (duct mount)	stainless steel
electronics (duct mount)	cast aluminum
electronics (wall mount)	ABS plastic
Connections	screw terminals 0.51.5 mm ²
Sensor protection (duct mount)	
standard	membrane filter (17039 HM)
option	stainless steel
-	sintered filter (HM46670)

HMW 21/31 Series Humidity and Temperature Transmitters

FEATURES/BENEFITS

- Full 0 to 100%RH measurement
- 4 to 20 mA output (HMW 21)
- Selectable voltage output (HMW 31)
- Temperature compensation
- ±2% accuracy
- Optional temperature measurement
- NEMA 4 housing
- Electronic, on-site, one-point calibration

NEMA 4 PROTECTIVE ENCLOSURE

The HMW 21 and HMW 31 series is configured for measuring relative humidity and temperature in systems in more demanding environments, where condensation and dust will commonly be encountered. A fully gasketed NEMA 4 enclosure, locking strain relief connector and membrane filter protect the electronics and sensors from environmental or mechanical damage. These transmitters are available as relative humidity only (UB), and as relative humidity and temperature (YB).

OUTPUT SIGNALS

The HMW 21 series features 2-wire, 4-20 mA output signals proportional to 0 to 100 %RH and -4 to +176°F (-20 to 80°C). It can be powered by AC or DC voltage. The HMW 31 series features output signals of 0-1V, 0-5V, 0-10V and 0-20 mA and can be powered by either AC or DC voltage.

FAST, ON-SITE CALIBRATION

The accuracy of the transmitters is simple to check using the HMI 41 humidity calibrator. The calibration can be done in seconds with a single potentiometer without disturbing operation. This saves hours of maintenance time and ensures high system accuracy.

THE UNIQUE HUMICAP® SENSOR

These relative humidity transmitters feature Vaisala's patented HUMICAP sensor. It is based on the capacitance change in a one-micron-thin polymer as it absorbs water vapor. The sensor exhibits fast response and has excellent long term stability, allowing the transmitters to achieve ± 2 % accuracy. It is unaffected by dust and most chemicals.

TECHNICAL DATA - HMW 21/31 SERIES

Relative Humidity

Measurement range	0 to 100 %RH
Accuracy at +68°F (+20 °C)	±2 %RH (0 to 90 %RH)
	±3 %RH (90 to100 %RH)
	(includes calibration uncer-
	tainty, non-linearity, non-
	repeatability)
Temperature coefficient	±0.02%RH/°F s(±0.04%RH/°C)
90% response time	15 sec with protective filter
Sensor	HUMICAP® H

Temperature (HMW 21YB and HMW 31YB)

Electronics accuracy at +68°F (+20	°C) ±0.36°F (±0.2 °C)
Temperature coefficient	±0.02°F/°F (±0.02°/°C)
Linearity	better than 0.18°F (0.1 °C)
Sensor	Pt 100 IEC 751 1/3 Class B

General

Screw terminals for wires
0.51.5 mm ² (AWG 2016)
ABS plastic (NEMA 4)
Ø 18 mm membrane filter or
sintered filter (optional)
+23 to +131 °F (-5 to +55 °C)
-4 to +176 °F (-20 to +80 °C)

HMW 21 and HMW 31 Series

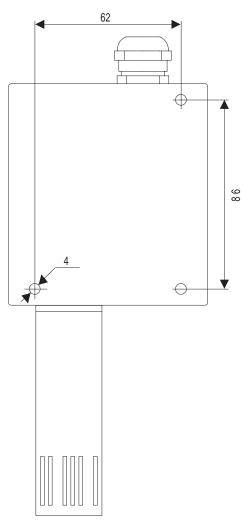
BACK to Table of

Dimensions in mm Contents

To INDEX

HMW 21/31 Price List

HMW 21UB and HMW 21YB


Input voltage:	10 to 35 VDC ($R_r = 0$ ohms)
	20 to 35 VDC ($R_{\rm L} = 500$ ohms)
Output signals	4 to 20 mA

HMW 31UB and HMW 31YB

Output	Supply Voltage	
DC	DC	AC
0 to 1V	10 to 35V	9 to 24V
0 to 5V	13 to 35V	11 to 24V
0 to 10V	18 to 35V	15 to 24V
0 to 20mA	10 to 35V	9 to 24V ($R_L = 0$ ohm)
0 to 20mA	19 to 35V	16 to 24V ($R_L = 500$ ohm

Specifications subject to change without notice.

HUMICAP® is a registered trademark of Vaisala

VAISALA HMD 60UO/YO Reliable Outdoor Humidity & Temperature Transmitter with Solar Radiation/Precipitation Shield

STABLE PERFORMANCE IN DEMANDING OUTSIDE ENVIRONMENTS

The HMD 60U and HMD 60Y duct-mount transmitters provide excellent reliability, long-term stability, and reliable operation. They incorporate the HUMICAP[®] humidity sensor, which is insensitive to dust and most chemicals and is not damaged by condensation. In outdoor environments, the 2212 HM shield protects the sensors from solar radiation and precipitation, without affecting performance. The HMD 60U and HMD 60Y measure relative humidity from 0 to 100% RH, and temperature (Model HMD 60Y only) from

-40 to +140 °F (-40 to +60 °C). Easily installed, they feature two wire connections, making retrofitting, upgrading and new installations easy.

SPECIAL FEATURES INCLUDE:

- Full 0 to 100% RH measurement
- 2212 HM shield provides excellent ventilation while blocking direct and reflected solar radiation
- True two-wire transmitter with 4 to 20 mA loop powered output: compatible with most energy management systems
- Electromagnetically compatible
- Temperature compensated
- Excellent long-term stability
- Negligible temperature coefficient
- ±2% accuracy (0...90%) ±3% (90%...100%)
- NEMA 4 housing

FAST, ON-SITE CALIBRATION

The accuracy of the transmitters is simple to check using the HMI 41 humidity calibrator. The calibration can be done in seconds with a single potentiometer without disturbing operation. This saves hours of maintenance time and ensures high system accuracy.

METEOROLOGICAL EXPERIENCE RESULTS IN SUPERIOR PERFORMANCE

Vaisala has 60 years of experience in measuring RH &T in outdoor environments. Our experience has shown, that for accurate measurement, the shield must not only protect but must be properly ventilated. The 2212 HM shield provides these functions without affecting transmitter performance. The transmitter and shield can be mounted on the roof or the side of a building for installation flexibility.

Model HMD 60YO for Relative Humidity and Temperature, shown above with 2212 HM Radiation Shield.

Model HMD 60UO for Relative Humidity only.

Model HMD 60T for Temperature only.

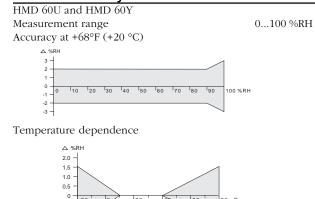
FLEXIBILITY OF OUTPUTS

Versatile alternatives to the HMD 60UO/YO transmitters for outdoor applications are the HMD 70 UO/YO transmitters. These instruments feature selectable output signals of 0 to 1V, 0 to 5V, 0 to 10V or 0 to 20 mA. Powered by either AC or DC voltage, they are available with relative humidity only or relative humidity and temperature sensors. They are also equipped with the radiation/precipitation shield.

TECHNICAL DATA - HMD 60UO/HMD 60YO

10 25 MDC (D

15 s with membrane filter


HUMICAP® 180

0 4

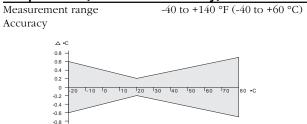
General

Supply voltage	$1035 \text{ VDC} (R_r = 0 \text{ y})$
	2035 VDC (R ₁ = 500 ý)
Output signal	420 mA
Operating temperature	
range	
electronics	-40 to +140 °F (-40 to +60 °C)
sensor head	-40 to +140 °F (-40 to +60 °C)
Storage temperature range	-40+176 °F (-40+80 °C)
Connections	screw terminals 0.51.5 mm ²
Housing	
sensor head	stainless steel
electronics housing	cast aluminum
Sensor protection	membrane filter
optional	stainless steel sintered filter

Relative Humidity

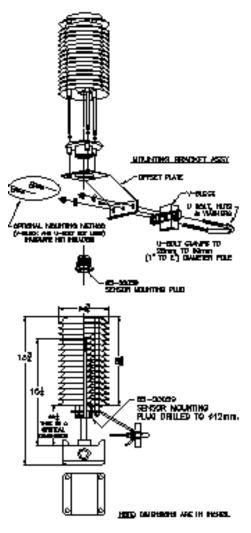
To INDEX

BACK to


Table of

Contents

0 60 80 •C -20 20 -0.5 -1.0 -1.5 -2.0 -


HMD 60/70 Response time at +68°F (+20 °C) Sensor **Price List**

Temperature (Y and T Models only)

Linearity better than 0.18°F (0.1 °C) Sensor PT 1000 IEC 751 class B Specifications subject to change without notice.

MODEL 2212HM SOLAR RADIATION/PRECIPITATION SHIELD

2212 HM Shield

Diameter	4.7 in (12 cm)
Height	10.6 in (27 cm)
Plate thickness	0.08 in (2 mm)
Plate spacing	0.44 in (11 mm)
Weight	1.4 lbs (0.7 kg)
Materials	UV stabilized white thermoplastic
Sensor mounting	1 in threaded hex plug with hole
	drilled for sensor probe
Mounting	Offset mounting with V-block and
	U-bolt, fits pipe diameters 1-2 in
	25-50mm
Optional mounting	Offset mounting bracket without
	U-bolt shield can be bolted into
	supporting surface (bolts not included)

VAISALA 40/50 Series Calibration-Free Wall/Duct Mounted Humidity & Temperature Transmitters

FEATURES/BENEFITS

- Never need calibration
- Fully interchangeable INTERCAP® sensor is easy to replace
- Low cost
- 0...100 %RH measurement
- +14...140 °F measuring range (HMD 40Y/HMD 50Y)
- +23...131 °F measuring range (HMW 40Y/HMW 50Y)
- 4-20 mA 2-wire output (HMD/W 40)
- 3-wire selectable output (HMD/W 50)

INTERCHANGEABLE SENSOR

Vaisala's HMD/W 40 and HMD/W 50 series incorporate the revolutionary INTERCAP® sensor. Because the INTERCAP is fully interchangeable, these transmitters never need calibration. Instead, the user can easily replace the INTERCAP sensor himself without the expense and inconvenience sometimes associated with the calibration process. And, in the duct mount model, the sensor's membrane filter/mechanical housing protects it from dirt and dust.

HUMIDITY & TEMPERATURE OR HUMIDITY ONLY

The duct and wall-mounted 40 and 50 series are available as humidity and temperature (Y), or humidity only (U) transmitters.

SELECTABLE FUNCTIONS (HMD/W 50)

The HMD/W 50 transmitters feature selectable output signals of 0 to 1V and 0 to 10 V. Powered by either AC or DC voltage, these transmitters can be duct or wall mounted.

HIGH PERFORMANCE AT LOW PRICES

Specifically designed for HVAC/EMCS applications, the HMD/W 40 and 50 series typically measure humidity levels with ±3 %RH accuracy and ±1 % stability per year. Easily installed directly into air ducts or within the controlled area, these transmitters feature two or three-wire connections, making retrofitting, upgrading or new installations easy. Competitively priced and requiring no routine maintenance, these calibration-free transmitters are a smart choice for your HVAC/EMCS applications.

40 series: 2-wire, 4 to 20 mA output

<i>Wall mount Duct mount</i>	RH only HMW 40U RH & T HMW 40Y RH only HMD 40U RH & T HMD 40Y
50 series: 3-wii	re, voltage output
Wall mount	RH only HMW 50U RH & T HMW 50Y
Duct mount	RH only HMD 50U RH & T HMD 50Y

Load resistance

Power supply HMD/W 40

HMD/W 50

TECHNICAL DATA - HMD/W 40 & 50 SERIES

Relative	Humidity

Measuring range (for which	
accuracy is specified):	1090 %RH
Accuracy at +68°F (+20 °C)	better than ±3 %RH
Stability	±2 %RH over 2 years
Temperature dependence:	< ±1.5% RH from -14° to +140°F
	(< ±1.5% RH from -10° to +60°C)
Sensor:	INTERCAP®
	part no. 15778

Temperature (40 Y and 50Y)

Measuring range	
HMD 40Y, HMD 50Y	+14+140° (-10+60°C)
HMW 40Y, HMW 50Y	+23+131°F (-5+55°C)
Total accuracy at +77°F (+25 °C)	±0.54°F (±0.3°C)
Temperature dependence	0.01°F/°F (0.01°C/°C)
Sensor	PT 1000
	IEC 751 Class B

General

BACK to

Table of Contents

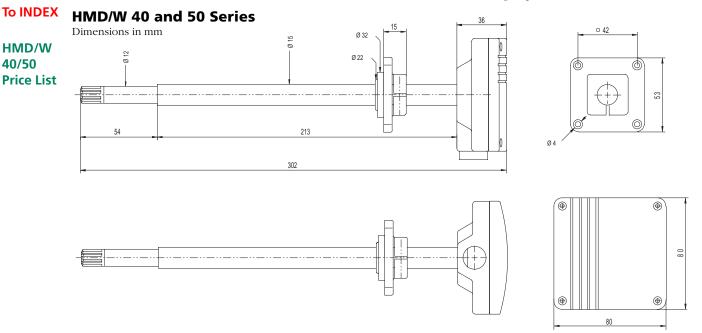
Output signal for relative humidity:	
HMD/HMW 40 series	420 mA
HMD/HMW 50 series	01 V and 0 10 V
	(equals 0100 %RH)
Output signal for temperature:	
HMD/HMW 40 series	420 mA
HMW 50 series	01 V and 010 V
HMD 50 series	010 V
HMD 40Y, HMD 50Y equals -401	140°F (equals -40+60 °C)
HMW 40Y, HMW 50Y equals -23	.131°F (equals -5+55 °C)

Current consumption HMD/W 40 HMD/W 50 Operating temperature range; HMD 40 and HMD 50 HMW 40 and HMW 50 Storage temperature range Operating humidity range (Sensor protection standard

option Housing material and classifications >20 Kohm

10...28 VDC 12...35 VDC/12...24 VAC (for 0...1 V output) 15...35 VDC/15...24 VAC (for 0...10 V output)

> 4 mA minimum 6.0 mA typical


+14...+140 °F (-10...+60 °C) +23...+131°F (-5...+55 °C) -40...+140°F (-40...+60 °C) 0...100 %RH (duct mounted) 0...90 %RH (wall mounted)

membrane filter, part no. 17039 plastic grid, part no. 17038

> ABS plastic, IP 65 (HMD 40U/Y and HMD 50 U/Y)

Specifications subject to change without prior notice. INTERCAP is a registered trademark of VAISALA.

1/2 " NPT conduit fitting adapter available.

HUMITTER[®] Calibration-Free Module with Interchangeable Sensor

FEATURES

- Never need calibration
- Fully interchangeable RH sensor is easy to replace
- Low cost
- 0...100% RH measurement
- 14...140°F (-10...+60°C) temperature measurement range (HUMITTER[®] 50Y and 50YX)
- Several user configurable outputs mA or VDC
- ±3% accuracy with ±1% stability per year

IDEAL SOLUTION FOR OEM APPLICATIONS

Compact and easy to use, the HUMITTER[®] is available to measure humidity only (HUMITTER 50U), or humidity and temperature (HUMITTER 50Y and HUMITTER 50YX). The difference between the Y and YX models is in the output: the Y model has an active voltage output; and the YX model has a passive resistive output. The housing of the HUMIT-TER[®] transmitter is IP 65 classified, and due to its metallized surface, is also electromagnetically compatible. Output can be changed using external electronics in a wide range of voltages and currents. For these reasons the calibration-free HUMITTER[®] series is an ideal solution for various OEM and HVAC applications.

INTERCHANGEABLE FILTERED SENSOR

The HUMITTER[®] relative humidity transmitters incorporate the INTERCAP[®], Vaisala's revolutionary, fully interchangeable sensor. Because of this feature, they never need calibration. Instead, the user can easily replace the INTERCAP[®] sensor himself without the expense and inconvenience sometimes associated with the calibration process. And, the sensor's membrane filter/mechanical housing protects it from dust and dirt.

EXPERIENCED R & D

To meet the demand for a low cost transmitter for volume applications and integration into other equipment, Vaisala designed the HUMITTER® series. Among Vaisala's most recent significant technological developments, the HUMITTER® series has benefitted from many years of research and development by Vaisala's highly respected, world-renowned scientists. Since inventing and patenting the first capacitive humidity sensor many years ago, Vaisala has consistently relied on past and ongoing research to quickly develop superior products which meet our customers' needs. We welcome the opportunity to apply our technology to satisfy your requirements.

HUMITTER® 50U Relative Humidity Transmitter

HUMITTER[®] 50Y Humidity/Temperature Transmitter with active voltage output

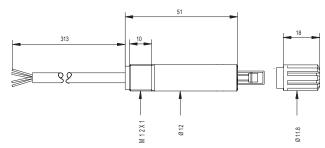
HUMITTER[®] 50YX Humidity/Temperature Transmitter with passive resistive output

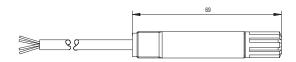
TECHNICAL DATA - HUMITTER

Measuring range (for which		Input power	728 VDC
accuracy is specified)	1090% RH	Output signal	$01 \text{ V}, \text{R}_{\text{I}} > 100 \text{ ký},$
Accuracy at 68°F (+20°C)	better than ±3% RH	I I I O	(equals 0100% RH and
Operating range	0100% RH	-40140	°F (-40+60°C) (10mV equals
Stability:	±2% RH over 2 years		one % RH or °C)
Temperature dependence	< ±1.5% RH from -10° to +60°C		
Sensor	INTERCAP®		05 V available for model
	part no. 15778		50 U only.*
Temperature			other voltage outputs and
Y model -active output			420 mA output available
Measuring range	+14140 °F (-10+60°C)		when using external
Accuracy at 68°F (+20°C)	1.1°F (± 0.6 °C)		electronics
Sensor	PT 1000 IEC 751 Class B	YX Model has only passive resis	tive output corresponding to
YX model - passive output		PT 1000 specification	
2-wire connection wire	2 x 0.08 ohm		
resistance		Current consumption	2 mA typical
Sensor	PT 1000 IEC 751 Class B	Operating temperature range	+14+140°F (-10+60°C)
		Storage temperature range	-40140 °F (-40+60°C)
		Operating humidity range	0 100% RH
		Sensor protection	membrane filter

Cable connections

Vs 7-28 VDC RH out 0-1V 0-100%RH T out 0-1V -40 - +60 °C GND (ground) NC (no connection)


Output orginal	(equals 0100% RH and
40 140 0	
-40140 \$	°F (-40+60°C) (10mV equals
	one % RH or °C)
	05 V available for model
	50 U only.*
	30 0 only.
	other voltage outputs and
	420 mA output available
	when using external
	electronics
YX Model has only passive resist	ive output corresponding to
PT 1000 specification	r r o r
Current concurrention	2 m A trunical
Current consumption	2 mA typical
Operating temperature range	+14+140°F (-10+60°C)
Storage temperature range	-40140 °F (-40+60°C)
Operating humidity range	0 100% RH
Sensor protection	membrane filter,
	part no. 16131
option	plastic grid, part no. 15724
Housing material and	
classification	ABS plastic, NEMA 4 (IP 65)
Dimensions	ø 12 mm, length 69 mm
Cable length	313 mm
Power supply	728 VDC
* Input power, 11, 16 VDC	


* Input power: 11-16 VDC Specifications subject to change without notice. INTERCAP® is a registered trademark of VAISALA, Inc.

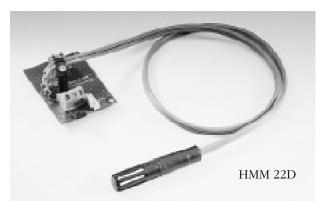
HUMITTER In HUMITTER 50YX resistive temperature Price List output via the violet and white wires

HUMITTER® Series

Dimensions in mm

HMM 22D and HMM 30C Relative Humidity Modules for Custom Applications

SMALL, EASY-TO INSTALL PRODUCTS FEATURE RUGGED SENSOR


Vaisala has developed several different products for OEM applications. Two of these products, the HMM 22D and HMM 30C, were developed for installation into environmental control chambers and are excellent examples of how Vaisala can meet the specific requirements of our customers.

Both the HMM 30C and the HMM 22D are small and easy to install directly onto the wall of a chamber or other device. The HMM 30C was designed for high temperature, high performance environmental chambers, such as those used for accelerated aging tests, or for 85°C/85% RH testing. The probe is separated from the circuit board, allowing the electronics to be housed along with other sensor and controller boards. The HMM 22D module provides a 4 to 20 mA output and operates over a temperature range of -40 to +176 °F (-40 to +80 °C). It uses a small sensing head, separated from the circuit board via a cable. Both of these products use the HUMI-CAP[®] sensor to measure relative humidity from 0 to 100%, and can be maintained using Vaisala's on-site electronic calibration method.

EXPERIENCED R&D DEPARTMENT DEVELOPS NEW PRODUCTS FOR SPECIFIC APPLICATIONS

Vaisala has a large R&D staff devoted to improving humidity sensing technology and to developing new products. Twenty five years ago this group invented and patented the first thin film capacitive humidity sensor and this team continues to be the industry leader. The expertise residing in this group makes it possible for Vaisala to develop products that will meet the specific requirements of OEM (Original Equipment Manufacturers) customers. Vaisala Inc. also has a knowledgeable technical sales force who provide the interface between our OEM customers and our R&D engineers. This capability is particularly useful when a customer is designing or manufacturing a product with rigid mechanical or electronic requirements.

The HMM 22D and HMM 30C are just two examples of the diverse products that have been designed to meet specific customer requirements. Contact Vaisala for new ideas on how to incorporate humidity monitoring into your product.

HMM 22D For use in environmental chambers

HMM 30C For high temperature environmental chambers

TECHNICAL DATA - HMM 22D AND HMM 30C

HUMIDITY TRANSMITTERS - HMM 22D

Input voltage:	10 to 35 VDC (R ₁ =0 ohms)
	20 to 35 VDC ($R_1 = 500$ ohms)
Output signal:	4 to 20 mA (true two-wire)
Electrical	
Connections:	Screw terminals for wires
	0.5 to 1.5 mm ²
Sensor protection:	Membrane filter or
	Sintered filter (optional)
Dimensions:	55 x 42 mm
Operating temperature range	
Electronics:	+23 to +131 °F (-5 to +55 °C)
Sensor:	-40 to +176 °F (-40 to +80 °C)
Cable length:	65 cm (25.6 in)
Probe dimensions:	ø 12 mm

Relative Humidity

Measuring range:	0 to 100% RH
Accuracy at +68°F (+20 °C)	±2% RH (0 to 90% RH)
	±3% RH (90 to 100% RH)
	(includes calibration inaccuracy,
	nonlinearity, nonrepeatability)
Temperature	
coefficient: ±0.02%RH/°F	(±0.04%RH/°C) when electronics
	& probe in same temp.
90% response time:	15 sec with membrane filter
Sensor:	HUMICAP [®]

HUMIDITY TRANSMITTER - HMM 30C ~ 1

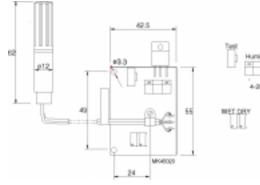
General		
Output	Supply Volta	age
DC	DC	AC
0 to 1 V	10 to 35 V	9 to 24 V
0 to 5 V	14 to 35 V	12 to 24 V
0 to 10 V	19 to 35 V	16 to 24 V
0 to 20 mA	10 to 35 V	9 to 24 V ($R_1 = 0$ ohm)
0 to 20 mA	20 to 35 V	17 to 24 V ($R_1 = 500$ ohm)
Electrical Connections	S:	Screw terminals for wires
		0.5 to 1.5 mm ²
Sensor protection:		Sintered filter
Operating temperature	e range:	
Electronics:	+	23 to +131 °F (-5 to +55 °C)
Sensor:	-40	to $+320^{\circ}$ F (-40 to $+160^{\circ}$ C)
Cable length:		1.6 m (5 ft)
Probe dimensions:		ø 12 mm, length: 200 mm

Relative Humidity

Measuring range:	0 to 100% RH
Accuracy at $+68^{\circ}F$ ($+20^{\circ}C$):	±2% RH (0 to 90% RH)
	±3% RH (90 to 100% RH)
	(includes calibration inaccuracy,
	nonlinearity, nonrepeatability)
90% response time:	15 sec
Sensor:	HUMICAP [®] H

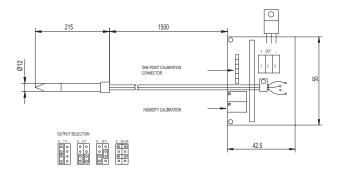
Specifications subject to change without notice. Humicap[®] is a registered trademark of Vaisala.

To INDEX


BACK to Table of **Contents**

HMM 22D/30C

HMM 22D


Price List

HMM 30C

Dimensions in mm

WAISALA HMM 210 Series Humidity, Dewpoint and Temperature Modules for Demanding Applications

DIFFERENT CONFIGURATIONS TO MEET DEMANDING APPLICATIONS

The HMM 210 series modules are designed for Original Equipment Manufacturers (OEM's) needing humidity and dewpoint measurements in demanding applications. Examples include manufacturers of environmental chambers, growth chambers, incubators, and hatchers. These modules provide high accuracy over wide temperature and relative humidity ranges. Also, they remain accurate and reliable under extreme conditions where a combination of high humidity and rapidly changing temperature can result in condensation on the sensor head.

THREE PROBE CONFIGURATIONS

- RH + T probe
- Dewpoint probe features Vaisala's unique Composite Sensor, which remains heated a few degrees above ambient to prevent dew formation (condensation) on the sensor.
- Dewpoint probe described above, together with a temperature probe for obtaining dewpoint, relative humidity, and temperature outputs

THREE BOARD CONFIGURATIONS

- HMM 211 has analog outputs, and three-wire design. It is compatible with all three probes
- HMM 212 has current outputs, and two-wire design. It is compatible only with the RH + T probe.
- HMM 213 has RS232 output, and is compatible with all three probes

DIFFERENT PROBE AND CABLE LENGTHS AVAILABLE

- The probes are 12 mm in diameter and available in lengths of 90* or 215 mm.
- Cable lengths of 65 cm, 150 cm or 300 cm are available for the RH+T and dewpoint probes
- Cable lengths of 150 cm or 300 cm available for the temperature probe
- *Humidity probe warming only available for the 90 mm probe.

UNIQUE COMPOSITE SENSOR DESIGN OFFERS SEVERAL ADVANTAGES

This Composite Sensor, available on the dewpoint probe configuration, is warmed to always remain a few degrees higher than ambient. Advantages of this patented technique include:

- No condensation problems on the sensor, as the temperature of the probe always remains higher than the ambient
- Fast response time, especially in rapidly changing temperatures
- Improved stability and accuracy in high humidities

NEW RE-GAINING OPTION

For 25 years, Vaisala's HUMICAP sensor has proven its resistance to dust and most chemicals, time and time again. However, for some extreme applications such as chemical exposure in chambers, when there is a risk of certain rare chemicals accumulating on the sensor, thereby decreasing accuracy, Vaisala's new re-gaining option is recommended. With this option, contaminants are evaporated from the sensor and performance is returned to normal. Re-gaining is always activated when the module is switched on to remove the effects of cleaning, sterilization, etc.

TECHNICAL DATA - HMM 210 SERIES

RELATIVE HUMIDITY

Measurement range	0100%RH
Accuracy against salt solutions	
(ASTM E104-85)	±2%RH (090%RH)
	±3%RH (90100%RH)
Achievable accuracy when calib	prated against high quality
humidity standards	±1%RH (090%RH)
	±2%RH (0100%RH)
Response time	(90%) at +68°F (+20 °C)
in still air (with sintered filter)	15 s
Typical temperature dependence	ce
of electronics	±0.01%RH/°F (0.02 %RH/°C)
Humidity sensor	HUMICAP®180

TEMPERATURE

Storage temperature range

Sensor protection (standard)

warming or re-gaining option

Meet EMC standards EN50081-1 and EN50082-2.

certain extent on the selected output range.

Current consumption without sensor head

In modules with analog outputs the supply range depends to a

(Electronics)

Connections

POWER SUPPLY

Operating voltage

	Measurement range	-94° +356 °F (-70°+180°C)
	Typical accuracy of	,
	electronics at +68°F (+20°C)	±0.18% (±0.1°C)
	Typical temperature depende	nce of electronics 0.0025°F/F
		(0.0025°C/°C)
	Temperature sensor in RH+T	probe Pt 100 RTD
		IEC 751 1/3 Class B
	Additional temperature probe	Pt 100 RTD
		IEC 751 1/4 Class B
	OUTPUTS	
	Two analog outputs selectable	2
BACK to	HMM 211	01 V, 05 V, 010V
		020 mA
Table of	HMM 212	420mA (loop powered)
Contents		
	Digital output	
	HMM 213	RS232
To INDEX		
	GENERAL	
HMM 210	Operating temperature range	
Price List	Probe	-94° +356°F (-70°+180 °C)
THE LIST	Electronics	-23° +131°F (-5+55 °C)

-40°... +160°F (-40°...+70 °C)

stainless steel sintered filter

screw terminals for 0.5...1.5 mm2 wires

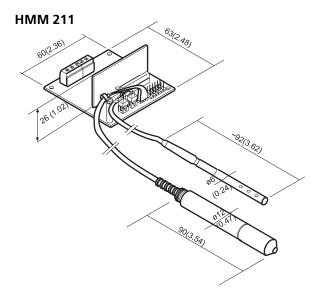
10...35 VDC

HMM 211 & 213 **CONFIGURATION OPTIONS**

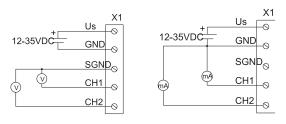
	12 mA at 35 VDC

	Compatible with modules:		
Probes	<u>HMM 211</u>	<u>HMM 212</u>	<u>HMM 213</u>
RH+T	yes	yes	yes
Dewpoint (heated composite sensor)	yes		yes
Temperature	yes		yes

Cable lengths


RH+T and Dewpoint probes	65, 150 and 300 cm
Temperature probe	150 and 300 cm

Regaining


Automatically takes place at power-up

HUMICAP® is a registered trademark of Vaisala, Inc. Specifications subject to change without further notice.

Dimensions in mm (inches)

HMM 211 Wiring diagram

VAISALA HMK 15 Humidity Calibrator

EASY AND RELIABLE CALIBRATION

No measuring instrument stays accurate by itself. It is essential that the functioning of an instrument is checked against a reference from time to time. Vaisala has developed the Humidity Calibrator HMK 15 to make calibration and spot checking of humidity probes and transmitters easy and reliable.

The operating principle of the HMK 15 is based on the fact that a saturated salt solution generates a certain relative humidity in the air above it. The reading of the humidity probe or transmitter can then be adjusted accordingly. This is a generally accepted and reliable method for calibrating humidity instruments - many leading laboratories use this method. Usually two or three different salt solutions are used which are chosen according to the application.

The structure of the HMK 15 is designed to ensure fast and stable temperature equilibration. No external power is required. In addition to laboratory use, it is also suitable for on-site checks. Special transit covers make the HMK 15 particularly simple to transport. These features, together with the premeasured salts with a long life-span (even after taken into use), make the HMK 15 the ideal choice for the most demanding user.

The calibrator can be ordered with certified salts. A sample calibration is made from each batch in Vaisala's Measurement Standards Laboratory (MSL). The uncertainties achieved using these salts at e.g. +20 °C are given here:

- LiCl salt, 11 %RH (±1.3 %RH)
- MgCl₂salt, 33 %RH (±1.2 %RH)
- NaCl salt, 75 %RH (±1.5 %RH)
- K₂SO₄ salt, 97 %RH (±2.0 %RH)

HMK 15 includes a thermometer which is used for measuring the temperature during the calibration, and can also be used for checking temperature measurement accuracy of the transmitter. The accuracy of the thermometer is $\pm 0.54^{\circ}$ F ($\pm 0.3^{\circ}$ C). Each thermometer has been calibrated in Vaisala's Measurement Standards Laboratory (MSL).

HMK 15

Vaisala's Measurement Standards Laboratory is a FINAS accredited calibration laboratory. FINAS is a member of the EA (the European co-operation for Accreditation).

TECHNICAL DATA - HMK 15 HUMIDITY CALIBRATOR

HUMIDITY CALIBRATOR HMK15

- The standard HMK15 consists of the following parts:
- Two salt chambers, chamber covers and transit covers
- Base plate
- Calibrated thermometer (19728HM)
- Measurement cup and mixing spoon.

Salts, ion exchanged water (19767HM) and extra salt chambers (19766HM) can be ordered as options as well as a handy carrying bag (HM27032).

Each salt chamber of the HMK15 has holes with a diameter of 12, 13.5 and 18.5 mm. There are two holes with the diameter of 13.5 mm.

HMK 15

BACK to Table of Contents

To INDEX

HMK 15 Price List

HUMICAP® ACCESSORIES

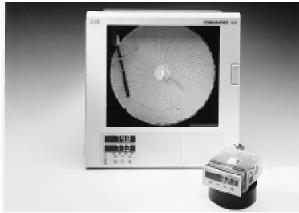


Chart Recorder and Process Meter



Adapters and Mounting Flange Enclosure and Power Supply

NEW CHART RECORDER AND PROCESS INDICATOR OFFER OUTSTANDING PERFORMANCE

The HMR 1900 chart recorder is available with either 1, 2, 3, or 4 pen recording. A hosedown-resistant housing, tough polycarbonate window and NEMA 4 X protection ensure flexible and reliable performance in even the harshest environments. Six-digit displays simultaneously provide information on up to four process variables. Charts can be set from one hour to 32 days per revolution.

Model 21801 indicator provides readouts of temperature, pressure, flow, level, and other variables. An analog output for retransmission to a chart recorder, PLC or controller is standard, as are an alarm relay, and a hosedown-resistant panel for harsh environments.

Ball Valve Assembly and Sample Cell

HUMICAP Sensors and Filters

FIELD PROVEN ACCESSORIES ENHANCE PERFORMANCE

Vaisala provides a broad assortment of accessories and supporting instruments to help you obtain optimal results from your HUMICAP[®] products. These additional items include:

- Calibration devices to ensure that your HUMICAP[®] instruments continue to perform accurately and reliably
- Additional accessories that make it easier to install or use your HUMICAP[®] products.
- Accessories to ensure optimal performance for your particular application
- Spares and replacement items to keep your instrument operating for years.

TECHNICAL DATA - HUMICAP ACCESSORIES

HMR 1900 CHART RECORDER

Recording 1,2,3,or 4 pens (red, blue, green, black) 3 position real-time event pen 10" dia or 105mm radius charts 1 hour to 32 days per revolution Analog Inputs signal types: mV, V, mA, ohm Pt 100 resistance thermometer Accuracy ±0.1% of reading Transmitter power supply

1 per channel 24 Vdc Analog outputs 4...20 mA ±0.1% accuracy Relay outputs SPDT 5A at 115/230 Vac Rating Operating range 32° to 130 °F (0° to 55°C) 5 to 95 %RH (non-condensing) Environmental IP66/NEMA 4 X case sealing Approvals CE Mark CSA; UL Power supply 115/230 or 24 V ac ±15%. 50/60 Hz Consumption < 40 VA (typical) Product warranty 2 years parts and labor

PANEL METER, MODEL 21801

BACK to	Display	High-intensity, 7 segment, 1 x 6 digit
Table of		red LED display
Contents	Configuration	User defined through keypad
	Alarms	Three user-defined
		High/low process; High/low latch
To INDEX	Maths function	Maximum and minimum value detection
		Average value calculation
	Analog inputs	
HUMICAP	Number	One as standard
Price List	Input sampling rate	e 250ms per channel
	Accuracy	±0.1 % of reading
	Туре	Universal, configurable for:
		Thermocouple, RTD, mV, mA, V dc
	Linearizer functions	Transmitter power supply
		fitted as standard
	Outputs	
	Retransmission	Analog, configurable in range 4 to 20 mA
	Relay output	One 5A relay as standard (SPDT)
	0	larms, totalizer count pulse, totalizer wrap
	Environmental	
	Operating limits	32° to 131 °F (0° to 55° C)
		5 to 95 %RH non-condensing
	1	ity <0.02 % of reading at 1μ V/°F (2μ V/°C)
	Front face	NEMA 3/IP65
	Approvals	CE Mark
		CSA; UL
	Product warranty	2 years parts and labor

SENSORS AND FILTERS

HUMICAP® Sensors: Replacement HUMICAP® sensors are available with and without membrane filters. The type of replacement sensor recommended will depend on both the instrument in use and its operating conditions. Refer to the specific instrument data sheet for the appropriate replacement sensor, or contact Vaisala for assistance.

Protective filters: Filter selection is important. Apart from screening the sensor head from any stray electromagnetic fields, the main purpose of the filter is to protect the sensor. If the environment is clean and a particularly fast temperature response is required, then an open cage grid can be used. Otherwise a membrane or netting filter is recommended for the majority of applications. When saturated, membrane or netting filters dry out faster than sintered ones. For temperatures above 176°F (80°C) or when there is a risk of damage from fast moving particles, then a sintered or stainless steel net filter should be used.

Vaisala probe heads can be installed in air streams with speeds up to 40 meters per second when fitted with the appropriate sintered filter.

Membrane filters:	
Part # 2787HM	ø 18.5mm, 0.5 µm
Part # 10159	ø 12.0mm, 0.5 μm

Filters for INTERCAP products:

Part# 15724 metallized plastic grid (non-filtering) Ø 12 mm Part# 16131 metallized membrane filter Ø 12.0 mm, 0.5µm Sintered bronze filters:

Sintered bronze filters are useful where mechanical strength is necessary, in very dusty environments, or at extremely high temperatures. Three options are available:

temperatures. Three options are available.	
Part # 0195 HM	ø 12 mm, 133 µm
Part # 6685 HM	ø 18.5 mm, 37 µm
Part # 6686 HM	ø 18.5 mm, 216 µm
Filters for the HMP 230 & HMP 360 series:	
Part # 16452 sintered filter	ø 13.5 mm, 38 µm
Part # 16720 PPS grid w/stainless steel ne	t ø 13.5 mm, 14 µm
Part # 16562 PPS grid (non-filtering)	ø 13.5 mm
Part # 16720 PPS grid w/membrane filter	ø 13.5 mm, 2 μm

OTHER ACCESSORIES

11990 HM Mounting Flange: This stainless steel mounting flange is easily attached to 12 mm diameter probes, allowing them to be used with flanged connections.

90-2271 Power Supply: This power supply is UL-Approved, uses 110 VAC power and supplies 24 VDC out.

85-HMPS Power Supply with NEMA 4 Enclosure

85-21797 Carrying Case: This case makes it easy to carry the HMI 41, additional probes and other small items.

45-20618 Conduit Adaptor:	Pg 9 to 1/2 in NPT
45-20775 Conduit Adaptor:	Pg 11 to $1/2$ in NPT
85-20557 Compression Fitting	14mm to $1/2$ in NPT fitting
85-21804 Thread Adaptor	1/2 inch ISO to $1/2$ in NPT
DMP248SC Sample Cell	stainless steel (SS) chamber
DMP248BVS Ball Valve Assemb	ly 1/2 in SS w/adaptor

VAISALA HMP 243 Dewpoint Transmitter for Condensing Environments and Challenging Outdoor Applications

UNIQUE COMPOSITE SENSOR PROVIDES EXCELLENT STABILITY UNDER EXTREME CONDITIONS

The HMP 243 provides fast and reliable dewpoint measurement even under extreme conditions where a combination of high humidity and rapidly changing temperature can present unwanted dew formation on the sensor head. Because the temperature of the HMP 243's sensor head is constantly higher than ambient, the possibility of dew formation is eliminated. The result is uninterrupted, accurate and stable dewpoint measurement that is unmatched by more common chilled mirror and psychrometric instruments.

FEATURES/BENEFITS

- Versatile and easy to use
- Wide temperature range from -40 to +356 °F (-40° to +180°C)
- Configuration and parameters can be set by the user
- Electronic, on-site, one-point calibration
- Typically requires calibration/maintenance only every one to two years
- Aluminum housing protects against dust/sprayed water and electromagnetic interference
- Optional sensor re-gaining function for resistance to interfering chemicals
- Optional temperature sensor head for ambient temperature reference and calculation of relative humidity, dewpoint difference, mixing ratio, absolute humidity, wet bulb temperature
- Supplied with NIST certificate of calibration

CUSTOMIZE YOUR INSTRUMENT

Vaisala's unique microprocessor design and modularity allow you to customize the HMP 243 at time of purchase. You can select:

- Local display or no display
- Sensor head cable length (2, 5 or 10 meters)
- Serial bus (RS 232C, RS 485/422, digital current loop)
- Choice of filter
- Choice of analog output signals
- Various temperature measurement ranges
- Metric or non-metric units
- Installation kit for duct mounting
- Re-Gaining option for extra protection against interference from rare chemicals
- Optional temperature sensor

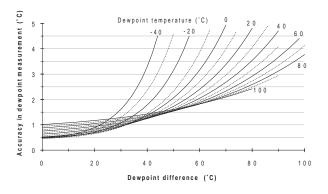
Note: The temperature probe should be kept at least 1 meter apart from the heated probe. For outdoor installations, ask for the meteorological installation kit. (MIK)

MEASURE DEWPOINT AND CALCULATE OTHER VARIABLES

With the addition of an optional temperature sensor to measure ambient temperatures, the HMP 243 can calculate relative humidity or absolute humidity; the difference between ambient and dewpoint temperature; and the mixing ratio and wet bulb temperature of ambient air. Small and light, the temperature sensor reacts quickly to changes in ambient temperature, providing very fast response time even for the calculated variables.

NEW RE-GAINING OPTION

For 25 years, Vaisala's HUMICAP[®] sensor has proven its resistance to dust and most chemicals time and time again. When there is the risk of certain rare chemicals accumulating in the humidity sensor, thereby decreasing the accuracy, Vaisala's new re-gaining option is recommended. With this option, contaminants are evaporated from the sensor and performance is returned to normal. Re-gaining can be activated using a software command or it can be programmed to occur at set intervals.



TECHNICAL DATA - HMP 243

Dewpoint Temperature

Measurement range -40...+212 °F (-40...+100°C) Reponse time (90%) at 68°F (+20°C) 15 s in still air (with sintered filter) Sensor HUMICAP® KC

Accuracy: find the intersection of the dewpoint temperature curve and the dewpoint difference reading (process temperature-dewpoint temperature) on the x-axis and read the accuracy in dewpoint measurement at the y-axis.

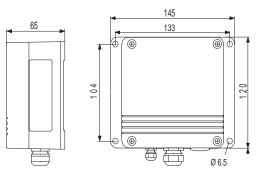
	Temperature (option)	
BACK to	Measurement range	-40+356 °F (-40+180°C)
	Typical accuracy at 68°F (+20°C)	0.18°F (±0.1°C)
Table of	Typical temperature dependence	0.005 °F/°F (0.005 °C/°C)
Contents	of electronics	
	Sensor	Pt 100 RTD
		IEC 751, class 1/4 B
To INDEX		
	Outputs	
Price Lists:	Two analog outputs	020 mA, 420mA,
	selectable and scaleable	01 V, 05 V, 010V
HMP 243	Typical accuracy of analog	±0.05% FS
Dewpoint	output at 68° F (+20°C)	
only	Typical temperature dependence	0.005 % FS/°F
	of applog output	(0.005 % FS/°C)
HMP 243	of analog output Serial output available	RS 232C
	Senai output available	R5 252C
Dewpoint	Ø 13.5	
& Temp.	Ø 13.5 Ø 5.5	
		cable length 2.5, or 10 meters
	2.9	cable length 2.5, or 10 meters
	70	
	64	Ø 3.1

Ø 5.5

93

Calculated Variables

Available only when temperature sensor head is in use.		
Typical ranges		
relative humidity	0100 %RH	
dewpoint difference	0+90 °F (0+50 °C)	
mixing ratio	0500 g/kg d.a.	
absolute humidity	0600 g/m3	
wet bulb temperature	32+212°F (0+100 °C)	
Accuracy of RH measurement	±(0.5 %RH + 2.5% of reading)	


General

Connections	screw terminals for 0.5 mm ²
	wires (AWG 20), stranded
	wires recommended
Operating voltage	24 VDC/VAC (2028 V)
Power consumption	200 mA max. (24 VDC)
during re-gaining	270 mA max. (24 VDC)
Recommended external load for	
current outputs	< 500 ohm
01 V ouput	> 2 kohm (to ground)
05 & 010 V outputs	> 10 kohm (to ground)
Electromagnetic compatibility	IEC 801-3
with sintered filter	HMP 2433 V/m
with steel netting PPS grid	10 V/m
Operating temperature range for	
electronics	-40+140 °F (-40+ 60 °C)
with display cover	+32122 °F (0+50 °C)
Storage temperature range	-40+158 °F (-40+70 °C)
Housing material	G-Alsi12 (DIN 1725)
Housing classification	NEMA 4 (IP 65)
Bushing	for 710 mm diameter
	cables (8 x 0.5 mm^2
	shielded cable)
Sensor head cable lengths	2, 5, or 10 meters
Humidity sensor protection	sintered filter of stainless
Ø 13.5 mm	steel
	PPS grid with steel netting

Specifications subject to change without prior notice. HUMICAP® is a registered trademark of Vaisala.

HMP 243

cable length 2, 5, or 10 meters

Ø6

DMP 246 Dewpoint Transmitter For High Temperature Applications

FEATURES/BENEFITS

- New DRYCAP[®] sensor for accurate, reliable, long-term stability and fast response
- Measures moisture content at process temperatures up to 662 °F (350 °C)
- Excellent long-term stability
- User-programmable, versatile and easy to use
- Easy to install, calibrate, maintain
- NIST traceable (certificate supplied)
- Two analog outputs, serial interface
- Optional alarm relays and local display

The DMP 246 transmitter incorporates the new DRYCAP® thin film polymer sensor. The DRYCAP® sensor is optimized to high temperature applications and is accurate, reliable and stable for long periods. Immune to particulate contamination, condensation and most chemicals, the sensor can be used with confidence in industrial environments. Even though the polymer element has an upper operating limit of below 392°F, a new probe design eliminates the need for complicated sampling systems and allows the sensor to be placed directly in temperatures up to 662°F without sacrificing accuracy or stability. This is accomplished without moving parts, additional power, or cooling utilities, therefore eliminating the risk of damaging the transmitter due to a cooling failure.

The microprocessor-based transmitter measures water vapor pressure, enabling it to output dewpoint and mixing ratio. Relative humidity and temperature measurements are used only during calibration and when checking for the proper cooling effect.

THE COOLING SET

The DMP 246 comes with a cooling set as a standard feature. The cooling effect may be regulated by adding the cooling profiles, or removing them from the set, to eliminate too effective cooling that could increase the possibility of condensing water vapor. Should there be any condensation, it only alters the moisture reading until the water evaporates. The DRYCAP[®] sensor is fully recoverable from a saturated state.

The cooling rate is controlled by the process flow rate and the delta temperature between the process gas and surrounding ambient temperatures. If the transmitter is operating close to the condensation point and the operator is unsure of the process conditions, the transmitter has a simple check method for determining whether to install the profiles or remove them.

OPTIONS AND ACCESSORIES

Display/Keypad Cover: The display/keypad option displays the measurements at the point of installation.

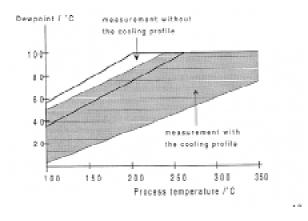
It also makes the DMP 246 transmitter simple and easy to use; the menus help the user to configure and operate the transmitter.

Alarm Outputs: For applications where adjustable on/ off alarm control is needed, the alarm relay option is the solution. Alarm relays include two SPCO (single pole change over) type relays with up to 8 A/230 VAC contacts.

Cables: The probe cable of the DMP 246 can be either two, five or ten meters long.

Power Unit: The DMP 246 has, in addition to the standard 24 VAC/VDC, options for 115 VAC or 230 VAC operating voltages.

CALIBRATIONS MADE EASY


The transmitter software allows the user to perform either one or two-point calibration, which ensures a $\pm 2^{\circ}$ C dewpoint accuracy in specified measurement ranges. Calibrations are made against relative humidity references (e.g. salt baths). The transmitter can also be sent to Vaisala for a NIST traceable calibration. In typical conditions calibration once a year is recommended.

TECHNICAL DATA - DMP 246

Measured Variables

Dewpoint temperature Measurement range +50...+212°F (+10...+100 °C) Accuracy ±3.6°F (±2 °C) (in the full measurement range displayed in the graph below)

Response time (90%)	
at 135 °C, from dry to wet	10 s
at 135 °C, from wet to dry	50 s
Mixing ratio	0500g/kg dry air
Outputs	

BACK to Table of Contents

) mA
10 V
%FS
/°C)

General

General		
Sensor		DRYCAP [®] sensor
Connections	screw termin	nals for 0.5 mm ² wires (AWG 20),
		stranded wires recommended
Operating volta	ige	isolated 24 VDC/VAC (2028 V)
	-	option* 115 VAC, 230 VAC
Power consum	ption	100 mA max. (24 VDC)
Recommended	external load	for
current outpu	its	< 500 ohm
01 V output		> 2 kohm (to ground)
05 & 010 V outputs		> 10 kohm (to ground)
Operating temp	perature range	for
sensor head		32°662°F (0350°C)
electronics		-40+140 °F (-40+60 °C)
with display o	cover	32+122°F (0+50 °C)
with power su	upply unit	-40+113 °F (-40+45 °C)
with alarm ou	itputs up to 8A	-40+104 °F (-40+40 °C)
with alarm ou	itputs up to 6 A	-40+140 °F (-40+60 °C)
Storage temperature range		-40+158 °F (-40+70 °C)
Housing material		G-Alsi12 (DIN 1725)

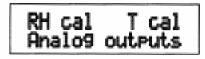
Housing classification	NEMA 4 (IP 65)
Housing dimensions Bushing	145 x 120 x 65 mm for 710 mm diameter cables
zuining	$(8 \ge 0.5 \text{ mm}^2 \text{ shielded cable})$
Sensor protection	sintered filter of stainless steel (HM46780)
Serial Interface Mo	
Module types	RS 485/422
Caractina	digital current loop screw terminals for 0.5 mm ² wires
Connections (AWC	G 20), stranded wires recommended
Assembly	plug-in module
Number of devices on l	
RS 485/422 digital current loop	32 6 (single loop)
uigitai earrent toop	9 (dual loop)
Network cable type	twisted pair
Network cable length	1000 m max.
Network data speed RS 485/RS 422	9600 baud max.
digital current loop	4800 baud max.
* simultaneous installati internal power supply i	ions with alarm outputs and
internal power suppry i	is not possible.
Dimensions in mm	$\langle - \Theta \rangle$
	$+ \oplus -(- \oplus -) - \oplus +$
	\mathbb{N}
Mount	ing Flange
	(AISI 316)
	0 105
	0 118
DMP 246 prob	
(stainless steel grid)	(cable 2, 5 or 10 m)
	357
	334.5
22.5	(pipe) ø13.5
Cooling Set	l
27.5 164	304 4 . 112.5
21.0	
	===================================
6; 6; 6; 6;	
	12 12 12 12 12 12 12 12 12 12
sintered	
filter (fixed on top of	=======================================
the cooling set)	
I	flange

DMP 248 Dewpoint/Temperature Transmitter For Low Dewpoint Applications

FEATURES/BENEFITS

- New DRYCAP[®] sensor for accurate, reliable, longterm stability and fast response
- Unique automatic self-calibration
- User-programmable, versatile and easy to use
- Easy to install, calibrate, maintain
- NIST traceable (certificate supplied)
- Two analog outputs, serial interface
- Optional alarm relays, sensor re-gaining function, local display, sampling system

DRYCAP® PERFORMANCE


DMP 248 transmitter incorporates the DRYCAP[®] thin film polymer sensor and advanced software programming. The combination makes the DRYCAP 248 dewpoint transmitter ideal for dry ambients. It offers reliable, accurate measurements with excellent longterm stability.

The DRYCAP® sensor is immune to particulate contamination, water condensation, oil vapor and most chemicals and can be used with confidence in industrial environments. Since the sensor can withstand condensation, its performance becomes unmatchable for low dewpoint applications that might see water spikes in the process. The sensor will not only withstand free water contact, but will rapidly recover 100% from such exposure, and accurately monitor process dewpoints.

The DMP 248 provides Vaisala's most accurate and stable measurement in dry ambients. The "autocalibration," or self-evaluation, is done in-line, while the process is running. If the measurement accuracy is not confirmed, the software makes the corrections to the calibration curve. The corrections may be due to contamination or aging of the sensor. In either case the transmitter adjusts the measurement and continues to function. Calibration occurs so quickly, and corrections are so minor, that the user will not even realize it has taken place. "Auto-calibration" parameters are set by the factory, but can be changed by the user.

SETTINGS AND ADJUSTMENTS MADE EASY

Selecting, scaling and calibrating the analog output signals and parameters can be done in minutes with simple software commands.

These commands can be given, using the menus on the local display, or with a PC or terminal connected to the transmitter's serial bus.

The microprocessor-based DMP 248 transmitter measures water vapor pressure and temperature, enabling it to display dewpoint, relative humidity, ppm_v and temperature. The transmitter has two analog outputs and any two of the four measured variables may be selected as output signals.

The transmitter software allows the user to perform a one or two point calibration against relative humidity references, e.g. Vaisala's electronic calibrators or HMK 15 salt baths. The transmitter can also be sent to Vaisala for a NIST traceable calibration. The calibration intervals depend on the application where the transmitter is used. In normal conditions, calibration once a year is recommended.

TECHNICAL DATA - DMP 248

Measured Variables

Dewpoint	
Measurement range	-76°+176°F (-60°+80°C)
Accuracy	±3.6° F (-58°+176°F)
	±2°C (-50+80°C)
Response time (90%) at flow rate	0.08 m/s,
1 bar and +68°F (+20°C)	
-40 -> -4°F dp (-40 -> -20°C dp)	35s
-4 -> -40°F dp (-20 -> -40°C dp)	240s
Relative Humidity	
Measurement range	0100%
Accuracy	<±0.5% (010%)
	±1.0% (1090%)
	±2.0% (90100%)
Temperature	
Measurement range	-40°+176°F (-40°+80°C)
Typical accuracy of electronics	
at +68°F (+20°C)	±0.18°F (±0.1°C)
Typical temperature dependence	
of electronics	±0.005°F/°F (±0.005 °C/°C)
Temperature sensor	Pt 100 IEC 751 1/3 class B
ppm_ (dry)	
Measurement range (typical)	05000 ppm
Accuracy at 68°F (20°C), 1013mb	ar 7.3 ppm +8.3% of reading

Outputs

	Outputs	
	Two analog outputs	020 mA
BACK to	selectable and scaleable	420 mA
Table of		01V
Contents		05 V
		010 V
	Typical accuracy of analo	og output
To INDEX	at +68°F (+20°C)	±0.05 % FS
	Typical temperature depe	endence
	of analog output	0.003 % FS/°F (0.005 % FS/°C)
DMP 248	Serial output	RS 232C
Price List	Options and Access	ories
	Display cover	local display/keypad
		2 x 16 characters' LCD
	Cable lengths	2, 5 or 10 meters
	Alarm relays*	2 pcs 8 A/230 V SPCO
		(single pole change over)
	Serial modules	RS 485/422
		digital current loop
	Sensor re-gaining	
	Sample systems	sample cell or configurable sample
		systems (see DSS 10)
	Power supply module*	115/230 VAC
	* simultaneous installation	ns with alarm outputs not possible.

General		
Sensor		DRYCAP®
Connections	screw te	rminals for 0.5 mm ² wires (AWG 20),
		stranded wires recommended
Operating volta	age	isolated 24 VDC/VAC (2028 V)
option:		115 VAC, 230 VAC*
Power consum	ption (st. c	configuration) 100 mA max. (24 VDC)

Recommended external load for	
current outputs	< 500 ohm
01 V output	> 2 kohm (to ground)
05 & 010 V outputs	> 10 kohm (to ground)
Operating temperature range for	6
electronics	-40°+140°F (-40°+60°C)
with display cover	32°+122°F (0°+50°C)
with power supply unit	-40°+113°F (-40°+45°C)
with alarm outputs up to 8A	-40°+104°F (-40°+40°C)
with alarm outputs up to 6A	-40°+140°F (-40°+60°C)
Storage temperature range	-40°+158°F (-40°+70°C)
Pressure range of DMP248	
absolute pressure	
probe	02mPa (020 bar)
sliding probe	01mPa (010 bar)
Housing material	G-Alsi12 (DIN 1725)
Housing classification	NEMA 4 (IP 65)
Bushing	for 710 mm diameter
	s (8 x 0.5 mm2 shielded cable)
Sensor protection (ø 13.5 mm)	sintered filter of stainless
	steel (16452)
Serial Interface Modules	
Module types	RS 485/422
	digital current loop
Connections	screw terminals for 0.5 mm2
	wires (AWG 20), stranded
	wires recommended
Assembly	plug-in module
Number of devices on line	
RS 485/422	32
digital current loop	6 (single loop)
0 1	9 (dual loop)
Network cable type	twisted pair
Network line length	1000 m max.
Network data speed	
RS 485/RS 422	9600 baud max.
digital current loop	4800 baud max.
	1000 Sudd India
PROBE UP DMP 248	Dimensionalis
	Dimensions in mm
' 29 cable ler 2, 5 or 10	
2, 50110	\square the ball valve set
adjustment	
range 120 mm	dy hex = 24
PROBE PUSHED DOWN	
nut hex =	= 27 Dall valve (Part No. DMP 248BVS)
31 178	-5.5 stainless steel filter
R 1/2 keg. ISO 7/1	process pipe
(1/2" NPT Adapter available)	
Electronic	
1 . <u>1</u> 104 L	120 a)(v)(c)(m)
-6.5	

133

65

VAISALA DSS 10 Configurable Sample Systems for the DMP 248 and HMP 238 Dewpoint Transmitters

DEWPOINT MEASUREMENTS IN EXTREME CONDITIONS

When the operating environment is not suitable for the moisture probe to be directly installed in the process an alternate solution could possibly be found with a Vaisala sampling system.

The sample system allows for greater measurement accuracy and stability by controlling the temperature, pressure and filtration levels to optimize the performance of the sensor. The sampling systems can be configured with cooling coils to reduce temperatures above 176°F (80°C), filters to remove particulate down to 0.01 micron in size, along with valves, flow meters, pressure gauges and vacuum pumps to control flow rates and pressure levels.

Vaisala's sample systems are easy to install, operate and virtually maintenance free. Each system comes mounted on a steel plate that is fixed to the wall. Stainless steel tubing is then connected from the process tap to the sample system to allow gas flow from the process to the sample system. Power will need to be supplied to the dewpoint transmitter as well as the vacuum pump, if ordered. The system will only need a one time adjustment of valves to achieve the desired gas flow rates and pressure levels.

The DSS 10 sample system offers the flexibility and customization necessary to meet various demanding applications. The systems may contain any, or all, of those items listed on the DSS 10 order form in the 1999 price list. When unsure about which components to select, and why, consult a Vaisala representative.

SAMPLE SYSTEM COMPONENT OPTIONS

- Sample cell
- House the DMP248 dewpoint probe
- Cooling Coil Cool high temperature process gas to room temperature prior to the moisture sensor
- Inlet ball valve Acts as a shut off between process tap and sample system
- Inlet 3-way ball valve Manual control of two-process sample taps tied into one sample system
- Vent ball valve Acts as a drain if condensation occurs or as a pressure release for a closed loop system
- Outlet needle valve Adjustable control valve for system pressure and flow

- Sintered filter Protection against pipe scaling and other particulate larger than 7 microns and other particulate larger than 0.01 microns
- Pressure gauge Pressure indicator when sample system is pressurized
- Coalescing filter
 Protection against pipe scaling, liquid carry-over,
- Flow meter Indicates flow rate through sample system Flow switch
- A relay that indicates when there is low flow through the system
- Vacuum pump Pulls a sample of gas from the process through the sample system

RECOMMENDED DESIGNS FOR COMMON APPLICATIONS

Configuration for High Temperature Zones, i.e. Plastic Hoppers

Designed for process conditions:

- 1. Temperatures exceeding 176 °F (80°C)
- 2. Presence of dry particulate larger than 7-micron
- 3. Low pressure environments 0.280...1.2bar
- (4.0...17.4 psi) absolute

The system has been designed to remove process gas from the high temperature zones. The process gas enters the system through a cooling coil that reduces the gas to ambient temperature. An in-line filter then removes particulate larger than 7-micron from entering the sensor chamber. The gas is being removed from the process and cooled to room temperature to achieve the highest accuracy with Vaisala's moisture sensors. The customer will need to choose the flow meter scale and vacuum pump supply power.

#DSS10 B2B1A2(*)(*)B*

Configuration for Fluidized Bed Applications

Designed for process conditions:

- 1. Process temperatures 176...250°F (80...120°C)
- 2. Clean process gas
- 3. Low pressure environments 0.28...1.2 bar (4.0...17.4 psi) absolute

BACK to Table of Contents

The system has been designed to remove clean process air from a heated supply duct and cool it to room temperature by the sample tubing. Since the air being supplied must be clean of particulate there is no need for additional filtration other than the sintered end cap on the probe head. The gas is being removed from the process and cooled to room temperature to achieve the highest accuracy with Vaisala's To INDEX moisture sensors. The customer will need to choose the flow meter

scale, vacuum pump supply power and whether the optional inlet ball valve is needed or not.

Configuration for High Temperature Metal Treatment Applications

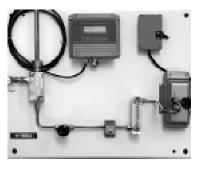
Designed for process conditions:

1. Temperatures exceeding 176° F (80°C)

2. Presence of particulate submicron and larger

3. Low pressure environments 0.28...1.2 bar (4.0...17.4 psi) absolute

The system has been designed to remove process gas from a high temperature zone. The process gas enters the system through a cooling coil that reduces the gas to ambient temperature. To ensure sensor protection from the aggressive process environment, the system has dual filters. The first filter element will need to be replaced periodically (dependent on operating environment). The second should not need to be replaced for extended periods of time. Both elements may be purchased from Vaisala, found in the spare parts list. This dual filter



#DSS10 (*)2D1A2(*)(*)B(*)

system offers the needed protection from the given environment. The customer will need to choose the flow meter scale, vacuum pump supply power, and whether they would like a 2-way or 3-way inlet ball valve. The 3-way inlet valve is manual and will only allow the system to monitor one location at a time.

* SEE DSS 10 ORDER FORM FOR OPTIONS

#DSS10(*)1A1A2(*)(*)B(*)

GM 12A/12B Portable CO, Meter

FEATURES / BENEFITS

- Excellent long term stability
- High accuracy
- Operates in demanding environments
- Low cost
- Operates over full relative humidity range
- Digital display and voltage output

HIGH PERFORMANCE/LOW COST MEASUREMENT

Vaisala's GM 12 meter incorporates a single wavelength non-dispersive infrared (NDIR) gas sensor for CO_2 -specific sensing. Other gases, including water vapor, do not affect its performance, nor is it adversely affected by high concentrations of CO_2 . The sensor is accurate and stable, and has a short warm-up time, which is particularly important in spot measurements.

VERSATILE AND EASY TO USE

The portable GM 12 is used in a wide variety of applications including environmental, process and ventilation survey and monitoring. It is available in two measurement ranges: 0 to 3000 ppm (GM 12A) and 0 to 3% carbon dioxide (GM 12B).

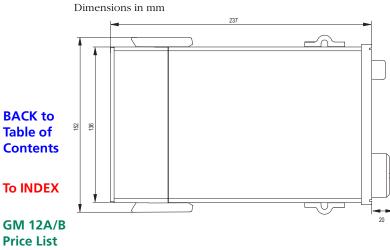
The GM 12 comes with an analog output and a digital display. Operated via a membrane keypad, the GM 12 has a user-selectable alarm level with audible and visual signals. The audible alarm and red light are activated when the measured gas concentrate exceeds the desired level. CO_2 concentration is shown on the clear 4 digit LCD. A voltage output is also available.

The meter's low flow indicator shows if the filter becomes dirty or the pump stops operating. The gas inlet nozzle is situated on the front panel of the meter to allow easy access for periodical replacement of the particle filter.

The GM 12 has a standard battery life of 12 hours. The rechargeable batteries are contained in a detachable section of the meter housing. A simple key function allows the user to check remaining battery life.

The meter housing is rated NEMA 4 for use in the most rigorous environments. It comes in a rugged weatherproof carrying case, which includes a battery. There is also enough space for other accessories.

GM 12A/12B Portable CO₂ Meter

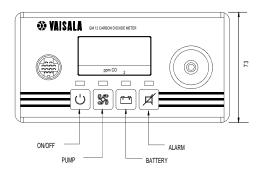


TECHNICAL DATA - GM 12A/B

CARBON DIOXIDE

Measurement range:	
-GM 12 A	0 to 3000 ppm
-GM 12 B	0 to 3%
Accuracy	$\leq \pm [1\% \text{ of FS} + 2\%]$
	Reading]
Stability (over 1 year)	<±5% FS
Repeatability	
-Zero	<± 0.5% FS
-Full scale	<± 1.5% FS
Response time	
(10 to 90% response)	30 sec
Zero drift	
with time	< ±2% FS/year
with temperature	< ±0.5% FS/°F (< ±0.1% FS/°C)
Sensing technique	single beam NDIR

GM 12A & GM 12B

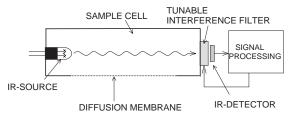

GENERAL

Output signal	01V linear
Power supply	rechargeable Battery
	Pack
Battery life (minimum)	12 hours
Display	4 digit 12.5 mm LCD
Alarm	adjustable 0 to full scale
Warm up time	
-Operational	2 min
-Full specification	<5 min
Operating temperature	
Range	+32 to 113°F (0 to 45°C)
Operating humidity	
Range	0 to 100% RH
	(non-condensing)
Storage temperature	
Range	-4 to 140°F (-20 to +60°C)
Housing material:	ABS Plastic
Housing classification	NEMA 4
Weight	1.8 KG
-	

ACCESSORIES

18180	3 m PVC tube for remote sampling	
18181	spare battery pack	
18182	230 V battery charger	
18192GM	field calibration kit	
(for calibration checks of stationary instruments)		
Calibration gases with related accessories		

Specifications subject to change without notice.


VAISALA GMD 20 and GMW 20 Series CO₂ Transmitters for Indoor Air Quality and Demand Controlled Ventilation

INTRODUCING THE CARBOCAP®

Vaisala's duct mounted GMD 20 and wall mounted GMW 20 series transmitters use the new silicon based CARBOCAP sensor. The simple structure and reference measurement capabilities make this Single-Beam Dual-Wavelength NDIR sensor extremely stable and reliable. The GMD/W series transmitters are specially designed for Indoor Air Quality (IAQ) and Demand Controlled Ventilation (DCV) applications. They are easy to install and require almost no maintenance.

CARBOCAP® TECHNOLOGY

The structure of the diffusion aspirated Single-Beam Dual-Wavelength sensor is remarkably simple: it consists of an infrared source, a sample cell, a tunable solid state interference filter and an IR detector.

The tunable interference filter enables measurements at two wavelengths. As a result, the reference measurements can be made without the typical weaknesses of Dual-Beam sensors.

The use of the new CARBOCAP sensor and the GMD/W 20 series has several advantages:

- high accuracy
- excellent stability
- negligible temperature dependence
- reliable operation
- ease of installation
- five year recommended calibration interval

The measurement accuracy of the sensor is not affected by dust, water vapor or most chemicals.

Use of the GMD/W 20 series transmitters results in considerable savings in installation, operation, maintenance and recalibration costs. In addition, it ensures the best possible control of air quality.

VERSATILE TRANSMITTERS

The GMD/W 20 series transmitters can be used independently or they can be incorporated into building energy management systems. The series

CARBOCAP®'s breakthrough self compensating sensor technology provides superior stability, accuracy, and temperature dependence over a broader temperature range. There's no add-on software fix or external software compensation. Just excellent sensor stability - for five years!

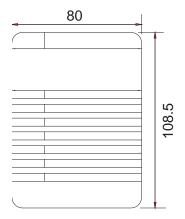
consists of a duct mount unit and wall mount units with display (D), or without display. The duct unit's compact sensor head design requires only a small hole in a ventilation duct, thereby minimizing the risk of leaking gaskets and measurement errors. In addition to the standard 0...20 mA, 4...20 mA and 0...10 V outputs, there are also two options: a LonWorks[®] interface and a relay output. The relay output is standard with the display units.

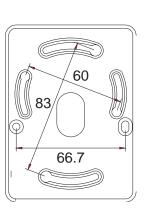
TEMPERATURE OPTION

The GMA 20T temperature module, an option with the GMW 21 wall mount unit, combines both CO_2 and temperature measurement into one transmitter. The GMA 20T has a temperature range of $32^\circ...122^\circ$ F (0...50°C), an accuracy @ 25°C of ±0.9°F (±0.5°C), and an output of 0...10V.

The versatile GMD/W 20 transmitters are easy to install and provide superior stability, accuracy, and temperature dependence over a broad temperature range. The self-compensating CARBOCAP® sensor technology ensures long term measurement stability (better than ±100ppm) over a 5-year period – without calibration.

TECHNICAL DATA - GMD 20 AND GMW 20 SERIES


Measured Variables


Measurement range	02000 ppm
(nominal; can be calibrated for	or other ranges:05000 ppm,
010000 ppm, 020000 ppm	,)
Accuracy at 77 °F (+25 °C) again	nst certified factory references
	<±1 % FS + 1.5% of reading)
(incl. nonlinearity and calibration	on uncertainty)
Repeatability	<±1 % FS
Temperature dependence	
of output (typical value)	0.05 % FS/°F (0.1 % FS/°C)
Long-term stability	<5% FS/5 years
Response time	60 seconds
(063% response)	
Temperature (optional with wa	ll model)
Output signal	010v
Temperature range	32122°F (050°C)
Accuracy (@25°C)	±0.9°F (±0.5°C)
Warm up time	30 min
Sensor	Semiconductor IC

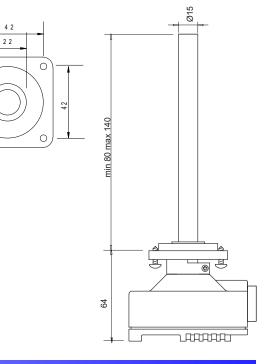
General

	Output signals	020 mA or 420 mA and 010 V
	Optional outputs	relay
		LonWorks [®] interface
		RS 232 (with serial COM adapter)
	Recommended external load	d:
DACK	current output	max. 500 Ohm
BACK to	voltage output	min. 1 kohm
Table of	Power supply	nominal 24 VDC/VAC
Contents	(1830 VDC)	
	Power consumption	<2.5 W
	Warm-up time	<5 minutes
To INDEX	Operating temperature rang	$+23 \text{ to } 113^{\circ}\text{F} (-5+45 \circ \text{C})$
	Operating humidity range	
	short term	0100 %RH non-condensing
GMD/W 20	long term	085 %RH non-condensing
Price List	Air flow range	010m/s

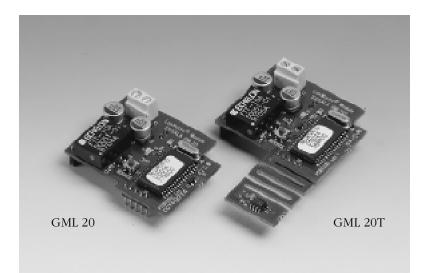
GMD 20 AND GMW 20 SERIES

Ο

0


Housing material	ABS plastic
Housing classification	
(electronics housing GMD20)	NEMA 4 (IP 65)
Weight:	
GMW 21 (D)	100 g (130 g)
GMD 20 (D)	140 g (170g)
Dimensions $(l x h x d)$:	see drawings below
Wall-mount also available in smaller size.	Contact Vaisala for
details.	
GMW 21 (D) GMD 20 (D) Dimensions (l x h x d): Wall-mount also available in smaller size.	140 g (170g) see drawings below

Accessories and Options


GMW 21D	wall unit with display & relay
GMD 20D	duct unit with display & relay
GMI 21	display and relay option for GMW21
GMR 20	relay output option
GML 20	LonWorks [®] module with CO ₂ signal
GML 20T	LonWorks® module with both
	CO ₂ signal and temperature signals
19222GM	calibration software kit
	(disk and serial COM adapter)
18192GM	field calibration kit
	(used with Vaisala's portable CO ₂ meters)
GMA 20T	Analog temperature module for GMW 21

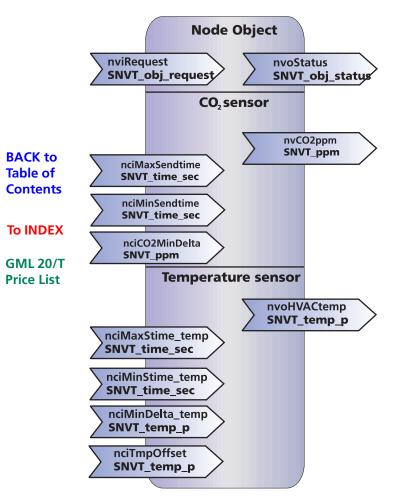
Specifications subject to change without notice.

LonWorks[®] Options for GML 20 and 20T Series CO₂ Transmitters

SIGNIFICANT SAVINGS

Vaisala's GML 20 and GML 20T are interface modules for distributing signals from GM 20 series transmitters digitally to a LonWorks® network over a twisted pair. The GML 20 module distributes CO₂ signals; the GML 20T module distributes both CO₂ and temperature signals. The GML 20T module can be used with the GMW 21 transmitter only. The use of these modules and GM 20 series transmitters with a LonWorks® networked control system contributes to considerable savings in cabling, installation and maintenance costs.

INTELLIGENT LonTalk® PROTOCOL


In a LonWorks® network, devices called nodes communicate with each other using the LonTalk® protocol. Every node consists of a Neuron® chip and a transceiver. The Neuron® chip is a microprocessor which contains an application program and LonTalk® protocol. The transceiver adapts the Neuron® chip into the hardware environment used. The nodes communicate with each other, sending messages containing the value of the desired variables.

With Vaisala modules, these variables are CO_2 (GML 20) or CO_2 and temperature (GML 20T). Some network variables are so-called configuration variables, which are used to define the behavior of the node. With the GML 20 and GML 20T, they are used to designate how much the temperature and/or carbon dioxide level must change before a measured value is sent again.

TECHNICAL DATA - GML 20 T AND GML 20

- LonWorks® interoperable
- Twisted pair free topology, network type TP/FT-10 at 78kbps
- · Additional two wires needed for powering the transmitter; can thus be connected to both powered and non-powered networks
- · Service button and service led for simple installation and configuration
- External interface (xif.) file available on request (GML 20 part no. 19412GM, GML 20T part no. 19748GM)
- Temperature (GML 20T only): $0.9^{\circ}F(0.5 \circ C)$ measurement accuracy +32°...113 °F (0°...+45 °C) measurement range 30 min.
- Warm-up time

NETWORK VARIABLES FOR CO. (BOTH MODELS GML 20 AND 20T)

nviRequest: to request modes for objects within this node nvoStatus: to report status of objects on this node **nvoCO,ppm:** this output variable reports the CO, level detected by the sensor

nciMaxSendtime: indicates the maximum period of time that expires before the sensor object automatically updates all its output variables

(default value: 300 seconds)

nciMinSendtime: indicates the minimum period between output network variable transitions

(default value: 5 seconds)

nciCO2MinDelta: indicates the minimum CO₂ level change required to update the output network variables (default value: 10 ppm)

NETWORKS VARIABLES FOR TEMPERATURE (GML 20T MODEL ONLY)

nvoHVACtemp: this output variable reports the temperature detected by the sensor

nciMaxStime_temp: indicates the maximum period of time that expires before the sensor object automatically updates all its output variables

(default value: 300 seconds)

nciMinStime_temp: indicates the minimum period between output network variable transitions

(default value: 5 seconds)

nciMinDelta_temp: indicates the minimum temperature

change required to update the output network variables (default value: 0.3 °C)

nciTmpOffset: indicates the temperature offset level (default value: -0.8 °C)

LonWorks® is a registered trademark of Echelon Corporation.

GMP 111 & GMP 111E CO₂ Transmitters for Industrial Applications

FEATURES / BENEFITS

- Excellent long term stability
- High accuracy
- Operates in demanding environments
- Low cost
- Operates over full relative humidity range
- Optional digital display

RELIABLE LOW COST SENSOR

Vaisala's GMP 111 and GMP 111E use a single wavelength non-dispersive infrared (NDIR) gas sensor for CO_2 -specific gas sensing. Other gases, including water vapor, do not affect its performance, nor is it adversely affected by high concentrations of CO_2 . The transmitters provide high accuracy and excellent long-term stability with low power consumption. This long term stability reduces the costs associated with the replacement of other types of CO_2 sensors. The sensor is diffusion aspirated, (the CO_2 gas enters the sensor through a gas permeable membrane). This silent sampling method is reliable and provides rapid response time.

VERSATILE AND EASY TO USE

The GMP 111 and GMP 111E are low cost CO₂ transmitters designed for a wide variety of applications including: environmental, agricultural, process, and ventilation monitoring and control. The GMP 111's measurement range is 0 to 3000 ppm carbon dioxide, and the GMP 111E's range is 0 to 7000 ppm. These transmitters provide user selectable 4 to 20 mA, 0 to 20 mA and 0 to 10 V linear outputs and include a relay output with selectable switching levels of 400, 600, 800, or 1000 PPM (GMP 111) and 1000, 2000, 3000, or 5000 ppm (GMP 111E). The nominal supply voltage for the transmitter is 24 VDC. These transmitters are rated NEMA 12 and can meet NEMA 4 requirements with the addition of an optional splash shield around the diffusion tube.

APPLICATIONS

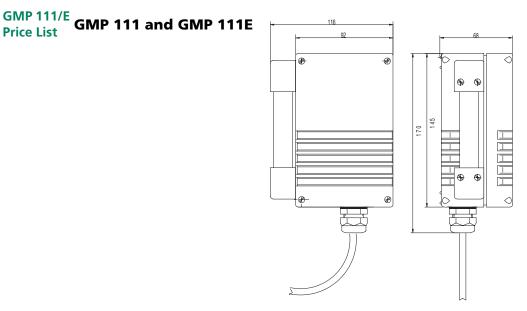
Environmental chambers HVAC (DCV, Energy Management) Industrial process control Laboratories Food processing/packaging Breweries/wineries Greenhouses Mushroom growing

GMP 111 and GMP 111E: Shown with standard enclosure and with optional GMI 111 digital display.

TECHNICAL DATA - GMP 111 AND GMP 111E CO₂ TRANSMITTERS

CARBON DIOXIDE

Measurement range:	
GMP 111	0 to 3000 ppm
GMP 111E	0 to 7000 ppm
Accuracy:	$<\pm [1\% \text{ of FS} + 2\%$
	reading]
Stability over 1 year:	<± 5% FS
Temperature dependence	$\leq \pm 0.05\%$ FS/ ⁰ F ($\leq \pm 0.1\%$ FS/ ⁰ C)
Repeatability:	
-Zero	<± 0.5% of FS
-Span	<± 1.5% of FS
Response time	
(from 10 to 90%):	50 sec
Zero drift	
with time	<± 2%FS/year
with temperature	<± 0.05%FS/°F (<± 0.1%FS/°C)
Sensing method:	NDIR
Air sampling method:	Diffusion

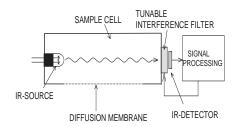

GENERAL	
Analog outputs	4 to 20 mA
(linear and switch selectable)	0 to 20 mA
	0 to 10 V
Relay output	voltage free contact
	closure, contact rating
	5 A 30 VDC (resistive)
GMP 111	for 400, 600, 800 or
	1000 ppm
GMP 111E	for 1000, 2000, 3000,
	or 5000 ppm
Power supply	24 VDC (1830VDC)
Power consumption	2.0 W typical,
1	3.6 W max
Warm up time	
-Operational	2 min.
-Full specification	<5 min.
Operating temperature	
Range	+32 +113°F (0 to 45°C)
Operating humidity	
Range	0 to 100% RH
C	(non-condensing)
Storage temperature	
Range	-4 to +140°F (-20 to + 60°C)
0	
Housing material	ABS Plastic
Housing classification	NEMA 12
-with splash shield	NEMA 4
Weight	0.5 Kg
Accessories	splash shield
	LCD display unit
	r ,

BACK to Table of **Contents**

To INDEX

Price List

Specifications subject to change without notice.


GMM 20W CO₂ Module for OEM Applications

INTRODUCING THE CARBOCAP®

Vaisala's GMM 20W transmitter uses the new silicon based CARBOCAP[®] sensor. The simple structure and reference measurement capabilities make this Single Beam Dual Wavelength NDIR sensor extremely stable and reliable. The GMM 20W transmitter is intended for OEM applications related to ambient CO₂ measurement.

CARBOCAP® TECHNOLOGY

The structure of the diffusion aspirated Single Beam Dual Wavelength sensor is remarkably simple: it consists of an infrared source, a sample cell, a tunable solid state interference filter and an IR detector.

The tunable interference filter enables measurements at two wavelengths. This means that the reference measurements can be made without the typical weaknesses of Dual Beam sensors.

SUPERIOR PERFORMANCE

Incorporating the new CARBOCAP® sensor in the GMM 20W transmitter provides several advantages: high accuracy and excellent stability, negligible temperature dependence, and reliable operation as well as a five year recommended calibration interval. The measurement accuracy of the sensor is not affected by dust, water vapor or most chemicals. Using the GMM 20W can result in considerable savings in operation, maintenance and recalibration costs, while ensuring the best possible quality of measurement.

CARBOCAP[®]'s breakthrough self-compensating sensor technology provides superior stability, accuracy, and temperature dependence over a broader temperature range. There's no add-on software fix or external software compensation. Just excellent sensor stability - for five years!

VERSATILE TRANSMITTER

The GMM 20W transmitter has several output alternatives. In addition to the standard 0...20 mA, 4...20 mA and 0...10 V outputs, there are also two options: a LonWorks[®] interface and a relay output.

The GMM 20W can also be equipped with an optional LCD display unit.

In addition to the standard 0...2000 ppm measurement range, the GMM 20W can be recalibrated for 0...5000 ppm, 0...10,000 ppm and 0...20,000 ppm ranges.

TECHNICAL DATA - GMM 20W

CARBON DIOXIDE

Measurement range	02000 ppm
(can be recalibrated for other ranges	
05,000 ppm, 010	,000 pppm, 020,000 ppm)
Accuracy at 77°F (+25°C)	<±(1% FS+ 1.5% of reading
(incl. nonlinearity and calibration u	incertainty)
Repeatability	<1% FS
Temperature dependence of output	1t 0.1%FS
Long-term stability	<5 %FS/5 years
(in ambient conditions)	
Response time	1 minute
(063% response)	

GENERAL

Output signals	020 mA or 420 mA and 010 V
Optional outputs	relay
	LonWorks [®] interface
Recommended external loa	ad:
current output	max. 500 Ohm
voltage output	min. 1 kohm
Power supply	nominal 24 VDC/VAC
	(1830 VDC)
Power consumption	<2.5 W
Warm-up time	<5 minutes
Operating temperature ran	ge +23113°F (-5+45 °C)
Operating humidity range	
short term	0100 %RH non-condensing
long term	085 %RH non-condensing
Air flow range	010m/s
Weight	56 g
Dimensions (l x h x d)	72 x 74 x 19 mm

To INDEX

BACK to Table of Contents

GMM 20 Price List

ACCESSORIES/OPTIONS

GMI 21	display and relay option
GMR 20	relay output option
GML 20	LonWorks [®] module with CO ₂ signal
GML 20T	LonWorks [®] module with both CO ₂
	and temperature signals
19222GM	calibration software kit
	(disk and serial COM adapter)
18192GM	field calibration kit
	(used with Vaisala's portable CO ₂ meters.)

GMM 11 and GMM 12 CO₂ Modules for Custom Applications

FEATURES / BENEFITS

- Excellent long term stability
- Low cost
- High accuracy
- Available in four CO₂ measurement ranges
- Operates over full relative humidity range
- Quick warm up cycle and response time

VERSATILE SOLUTIONS FOR OEM APPLICATIONS

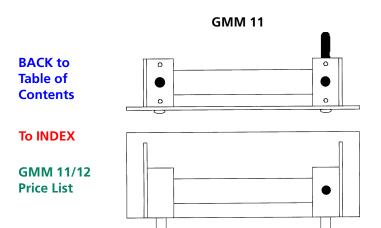
Vaisala's CO₂ detectors use a single wavelength nondispersive infrared (NDIR) gas sensor. This technique makes the sensor CO₂ specific, meaning it is not sensitive to the presence of other gases, including water vapor. The GMM modules provide high accuracy and excellent long term stability with low power consumption. They are available in various sensitivity ranges to cover the spectrum of measurement requirements. Output for the GMM 11 is 0 to 1V (non-linear). For the GMM 12, the output is linear and user selectable between 0 to 20 mA, and 4 to 20 mA. Linear voltage outputs are also possible with the addition of a resister soldered on the PCB, by the user. The versatility and long term stability of these sensor modules make them excellent solutions for a wide variety of OEM applications.

DIFFUSION OR PUMP ASPIRATION

All GMM 11/12 models can be pump aspirated with a pump supplying 0.3...10 l/min air flow (pump/part #18515). Also, GMM 11AD and GMM 12AD can be aspirated with a fixed or remote diffusion tube. When using pump aspiration, an appropriate filter (part #18179, or any other with 1 mm filtration) should always be used to avoid sensor contamination. With the diffusion tube the filtration is not needed. For the GMM 11AD/12AD models, use Vaisala part #18191 when a fixed diffusion tube is needed, and part #19255 GM for remote use. The pump, filter and neoprene tubing (for the remote diffusion tube) must be ordered separately.

APPLICATIONS

- Environmental chambers
- HVAC (DCV, Energy Management)
- Industrial process control
- Laboratories
- Food processing/packaging
- Breweries/wineries
- Greenhouses
- Mushroom growing


TECHNICAL DATA - GMM 11 AND GMM 12 CO₂ MODULES

CARBON DIOXIDE

Measurement range:	
- GMM 11/12 A / GMM 11/12 A	D 0 to 3000 ppm
- GMM 11/12 B	0 to 3%
- GMM 11/12 C	0 to 10%
Accuracy:	<±(1%FS+2% Reading)
Temperature dependence at ze	ero: $< \pm 0.5\%$ FS/°F
	(< ±0.1% FS/°C)
Repeatability:	
Zero	±0.5%FS
Span	±1.5%FS
Response time:	
(from 10 to 90%)	20 sec
	(50 sec with diffusion
	units)
Sensing method:	NDIR
Sampling technique:	
Diffusion tube	GMM 11AD/12AD
Pump aspiration	GMM 11/12A, B and C models

GENERAL	
Analog output:	
GMM 11	0 to 1V (non-linear)
GMM 12	4 to 20 mA
	0 to 20 mA
	(linear and switch
	selectable)
Power supply: GMM 11	15 VDC (14.2515.75V)
GMM 12	24 VDC (1830V)
Power consumption:	
GMM 11	0.9 W
GMM 12	2.0 W
Warm up time:	
- Operational	3 min.
- Full specification	515 min
	depending on installation
Operating temperature:	
Range	+32+113°F (0 to 45°C)
Operating humidity:	
Range	0 to 100% RH
	(non-condensing)
Storage temperature:	
Range	-4+140°F (-20 to +60°C)
Dimensions vary between differ	
GMM 11A	140 x 51 x 32 mm
GMM 11AD	140 x 65 x 50 mm
GMM 11B	40 x 51 x 32 mm
GMM 11C	40 x 51 x 32 mm
GMM 12A	150 x 55 x 35 mm
GMM 12AD	150 x 70 x 50 mm
GMM 12B	150 x 55 x 35 mm
GMM 12C	150 x 55 x 35 mm

Specifications subject to change without notice.

GMM 220 Series Carbon Dioxide Modules for Demanding OEM Applications

DIFFERENT CONFIGURATIONS TO MEET YOUR DEMANDING APPLICATIONS

The GMM 220 series modules are designed for Original Equipment Manufacturers (OEM's) needing CO_2 measurements in demanding applications. These modules are optimized for integration into equipment for such applications as greenhouse control, incubators, fermentors, and safety alarming. These modules provide high CO_2 measurement accuracy and long term stability over wide temperature and relative humidity ranges. For example, long-term stability is better than plus/minus 5% of full-scale readings over a two-year period.

• GMM 221 - for Accurate CO₂ Measurements From 0% to 20%

This module can be ordered from Vaisala with a detachable probe, 100 mm in length, which has been calibrated to operate within one of the five following concentration ranges:

- 0 to 2% CO₂ 0 to 3% 0 to 5%
- 0 to 10% 0 to 20%

These probes are directly detachable from the cable and are interchangeable in the field. For example, different probes, each calibrated to a different range, can be swapped in the field to meet different application requirements.

• GMM 222 - for Accurate CO₂ Measurements Up To 10,000 ppm (1%)

This module can be ordered from Vaisala with a detachable probe, 145 mm in length, which has been calibrated to operate within one of the four following concentration ranges:

- 0 to 3000 ppm CO₂
- 0 to 5000 ppm
- 0 to 7000 ppm
- 0 to 10000 ppm

These probes are also directly detachable from the cable and are interchangeable in the field. For example, different probes, each calibrated to a different range, can be swapped in the field to meet different application requirements.

• Different Cable Lengths and Connectors

- Cables available in 0.6 and two meter lengthsConnectors between the probe and cable are
- available in two configurations, straight and 90°, to facilitate ease of installation and increase application flexibility

• Versatile Design, Interchangeable Probes

The field interchangeability of the GMM 221 and 222 make calibration and field service easy. It is also easy to change the measurement range in the field by simply replacing one probe with another.

Different mounting, power supply, and output options are available.

CARBOCAP – THE SILICON-BASED CO₂ SENSOR

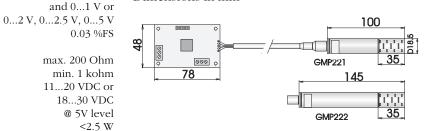
The functioning of the CARBOCAP sensor is based on the absorption of infrared light using a patented leading-edge silicon technology. This solid state sensor provides a reliable and stable constant reference measurement, resulting in excellent stability over time, even with wide temperature variations. Since water vapor, dust, and most chemicals do not effect the measurement, the GMM 220 series modules can be used in harsh and humid environments.

TECHNICAL DATA - GMM 220 SERIES

MEASUREMENT RANGES

	•
GMM221	02 % CO2
	03 % CO2
	05 % CO2
	010 % CO2
	020 % CO2
GMM222	03000 ppm
	05000 ppm
	07000 ppm
	010 000 ppm
Accuracy at 77°F (+25 °C) agair	st certified factory references
	<±[1 %FS + 1.5 % of reading]
(incl. nonlinear	rity and calibration uncertainty)
Repeatability	<±1 %FS
Temperature dependence	
of output (typical value)	0.05 %FS /°F (0.1 %FS /°C)
Pressure dependence (typ.)	0.1 %FS/hPa
Long-term stability	<±5 %FS/2 years
Response time (63%)	
GMM 221	15 seconds
GMM 222	30 seconds

ACCESSORIES


GMP221, GMP222	spare probe
(use the order form	n to define measurement range etc.)
GM25245	clips (2 pcs) for
	attaching the probe
GM45156	mounting flange for the probe
	0.6 m cable with straight or 90° connector
	2.0 m cable with straight or 90° connector
19040GM	serial COM adapter

The GMM221 and GMM222 modules comply with the following EMC standards and have passed the following tests: EN 50081-1 (EN 55022 class B = CISPR 22) En 50082-1 (IEC 1000-4-2, 4 KV contact, 8KV air) (IEC 1000-4-3, 80 - 1000 MHz, 80 % AM, 3V/m) (IEC 1000-4-4, 500V) (IEC 1000-4-6, 0.15 - 80 MHz, 80%, 3V/m)

CARBOCAP® is a registered trademark of Vaisala Oyj. Specifications subject to change without prior notice.

Dimensions in mm

0...20 or 4...20 mA

BACK to		0= ., 0=.9 ., 09 .
	Resolution of analog outputs	0.03 %FS
Table of	Recommended external load:	
Contents	current output	max. 200 Ohm
	voltage output	min. 1 kohm
	Power supply	1120 VDC or
To INDEX		1830 VDC
	Serial output	@ 5V level
	Power consumption	<2.5 W
GMM 220	Warm-up time	<5 minutes
Price List	Operating temperature	
	Range	-4°+140 °F (-20°+60 °C)
	Operating humidity range:	
	probe	0100 %RH
		non-condensing
	mother board	085 %RH
		non-condensing
	Housing material	ABS plastic
	Housing classification	
	(probe only)	NEMA4 (IP 65)
	Weight:	

GENERAL

BACK to

Output signals

Housing classification	
(probe only)	NEMA4 (IP 65)
Weight:	
GMM 221probe	max. 175 g
GMM 222 probe	max. 200 g

Accessories for CO, Instruments

GMI 111 REPLACEMENT COVER WITH DIGITAL DISPLAY FOR GMP 111 & 111E

A direct replacement for the front cover of the GMP 111 and GMP 111E. Its four-digit LCD display reads to the nearest ppm. It connects directly to the nine pin connector on the transmitter electronics and can be used as a digital indicator or as part of a calibrator.

FIELD CALIBRATION KIT

Made up of six calibration balloons, a hand pump and a calibration tube, it supports both one and two point calibration. In one point calibration ambient air is used as zero gas; in two point calibration the customer creates span gases using exhaled breath. Output of the transmitter is checked using a common DMM or the GMI 111. The transfer standard is the GM 12 portable meter. Quick and easy to use, it permits two point calibration without using heavy gas bottles.

PROTECTION SHIELD FOR GMP 111/111E

This protection shield prevents the ingress of water into the gas sample chamber during spray or wash down, providing protection of the sensor without impacting response time. It snaps in place and can be removed easily for cleaning or maintenance.

OTHER CO, ACCESSORIES

- Display and relay option for GMM 20W and GMW 20 series
- Relay output option for GMM 20W

Accessories and GMD/W 20 series Price List • Calibration software ki

BACK to

Table of

Contents

To INDEX

- Calibration software kit for GMM 20W and GMD/W 20 series
- Field calibration kit used with Vaisala's portable CO₂ meters
- Battery pack for GM 11 and GM 12
- Calibration pipe with T-piece for GM 11 and GM 12
- Calibration gases: 0, 1000, 2000, 3000, 7000 ppm and 3 %CO₂
- Two-stage pressure regulator for gas bottles
- Rotameter with needle valve for gas bottles
- Calibration pipe for GMP 111/E

TEL: 1-888-VAISALA (824-7252)

E-MAIL: incsales@vaisala.com

FAX: (781) 933-8029 Access catalog on-line at: www.vaisala.com/inc/ssdcat

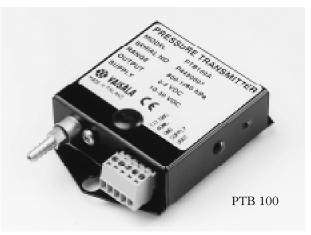
Page Blank on Purpose

PTB 100 Series Analog Barometers

FEATURES

- Standard pressure ranges (1 hPa=1 mbar) 900...1100 hPa 800...1060 hPa 600...1060 hPa
- Accuracy at room temperature including NIST traceability
 - ±0.3 hPa 900...1100 hPa
 - ±0.3 hPa 800...1060 hPa
 - ±0.5 hPa 600...1060 hPa
- Long-term stability ±0.1 hPa/year
- Supply voltage 10...30 VDC
- On/off control with external trigger
- Output voltage 0...2.5 or 0...5 VDC
- Current consumption less than 4 mA
- Mountable on a 35 mm wide DIN rail

APPLICATIONS


- Environmental pressure monitoring
- Agriculture
- Hydrology
- Data buoys
- Laser interferometers

EXCELLENT LONG-TERM STABILITY

The PTB 100 series analog barometers are designed both for accurate barometric measurements at room temperature, and for general environmental pressure monitoring over a wide temperature range. The excellent long-term stability of the barometers minimizes or even removes the need for field adjustment in many applications.

The compact PTB 100 series barometers are ideal for data logger applications because of their low power consumption, selectable external on/off control, practical output voltage ranges and three or four wire connection capability.

The PTB 100 series barometers use the BAROCAP[®] silicon capacitive absolute pressure sensor developed by Vaisala for barometric pressure measurement applications. The Barocap sensor combines the outstanding elasticity characteristics and mechanical stability of single-crystal silicon with the proven capacitive detection principle.

TECHNICAL DATA - PTB 100 SERIES

Note: Hectopascal (hPa) is the barometric pressure unit recommended by WMO and also accepted by ISO. **1 hPa = 1 mbar**

Operating Range

Pressure range	
PTB 100A	8001060 hPa
PTB 100B/PTB 101B	6001060 hPa
PTB 101C	9001100 hPa
Temperature range	-40+140°F (-40+60°C)
Humidity range	non-condensing

Accuracy

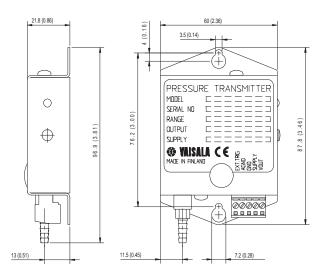
<u>PTB100A</u>	PTB1	01 <u>C</u>	<u>PTB 100B/PTB101B</u>
Linearity*	±0.25	hPa	±0.45 hPa
Hysteresis*	±0.03	hPa	±0.05 hPa
Repeatability*	±0.03	hPa	±0.05 hPa
Calibration uncertainty**	± 0.15	hPa	±0.15 hPa
Accuracy at +68°F (+20°C***)	±0.3	hPa	±0.5 hPa

- * Defined as ±2 standard deviation limits of end-point non-linearity, hysteresis error or repeatability error
- ** Defined as ±2 standard deviation limits of inaccuracy of the working standard at 1000 hPa including traceability to NIST
- *** Defined as the root sum of the squares (RSS) of endpoint non-linearity, hysteresis error, repeatability error and calibration uncertainty at room temperature

BACK to Table of Contents

contents	Total accuracy <u>I</u>	PTB 100A/PTB101C	PTB100B/PTB101B
	+68°F(+20 °C)	±0.3 hPa	±0.5 hPa
To INDEX	0104°F (0+40°C)	±1 hPa	±1.5 hPa
	-4113°F (-20+459	°C) ±1.5 hPa	±2 hPa
	-40140°F (-40+6	0°C) ±2.5 hPa	±3 hPa
PTB 100	Long-term stability		±0.1 hPa/year
Price List	Effect of thermal or		
	mechanical shocks		< ±0.2 hPa

General


Supply voltage	10 to 30 VDC
Supply voltage control with TTL level trigg	ger when enabled
with an internal jumper, barometer can l	be triggered on/off
using external TTL level trigger	
Supply voltage sensitivity	less than 0.1 hPa

Current consumption	less than 4 mA
-	less than 1 µA in shutdown mode
Output voltage	
PTB 100A/PTB 100B	05 VDC
PTB 101B/PTB101C	02.5 VDC
Resolution	0.1 hPa
Load resistance	10 kohm minimum
Load capacitance	47 nF maximum
Settling time	1 s to reach full accuracy after
	power-up
Response time (100% respo	nse) 300 ms
Warm-up shift	less than 0.1 hPa
Acceleration sensitivity	negligible
Pressure connector	M5 (10-32) internal thread
Pressure fitting	barbed fitting for 1/8" I.D. tubing
Maximum pressure limit	2000 hPa abs.
Electrical connector	a removable connector for five
	wires (AWG 2816)
Housing material	aluminum
Weight	85 g

 $BAROCAP^{\oplus}$ is a registered trademark of Vaisala. Specifications subject to change without further notice.

PTB 100 Series

Dimensions in mm (inches)

PTB 220 Series Digital Barometers

FEATURES

- 500...1100 hPa pressure range
- -40...+140 °F (-40...+60 °C) temperature range
- Total accuracy class A ±0.15 hPa class B ±0.25 hPa
- 0.01% reading accuracy (class A/800...1100 hPa/+20 °C)
- Long term stability ±0.1 hPa/year
- Available with one, two or three barometric pressure transducers
- Available with: RS 232C/TTL level, RS 485/RS 422 serial interface, or RS 232C/0...5VDC (0...20mA) output
- Available with local display with backlight
- Fast measurement mode

APPLICATIONS

- Barometric transfer standard
- Electronic alternative for Hg barometer
- Weather stations
- Data buoys and ships
- Laser interferometers

ACCURACY AND STABILITY

The PTB 220 series digital barometers are designed for a wide environmental pressure and temperature range. The class A barometers are fine adjusted and calibrated against a deadweight tester. The class B barometers are adjusted and calibrated using electronic working standards.

A single barometer can have one, two or three pressure transducers. Two or three transducers provide redundancy which improves measurement reliability in airport, weather station and pressure standard applications.

The local display has two rows and it can simultaneously show the barometric pressure, three-hour pressure trend and WMO pressure tendency code.

The PTB 220 series digital barometers use the BAROCAP[®] silicon capacitive absolute pressure sensor developed by Vaisala for barometric pressure measurement applications. The BAROCAP sensor has excellent hysteresis and repeatability characteristics and outstanding temperature and long-term stability.

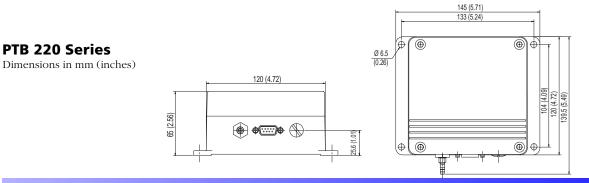
The PTB 220TS (transfer standard) is comprised of the PTB 220 transmitter and rechargeable battery. Conveniently housed in an attractive and rugged oak carrying case, it provides added protection and ease of portability. The high accuracy of the PTB 220 makes the PTB 220TS ideal as a transfer standard for calibrating barometers in the field.

TECHNICAL DATA - PTB 220 SERIES

Note: Hectopascal (hPa) is the barometric pressure unit recommended by WMO and also accepted by ISO. 1 hPa = 1 mbar

Operating Range

	Operating Range		
	Pressure range		5001100 hPa
	Temperature range		
	operating	-40+140°F (-40+60 °C)	
	with local display	32+140 °F (0+60 °C)	
	storage	-76+140°	°F (-60+60 °C)
	storage with local display	-4+140°	°F (-20+60 °C)
	Humidity range	1	non-condensing
	Accuracy		
		<u>0.01% R¤</u>	<u>Class A</u>
	Linearity*	±0.05 hPa	±0.05 hPa
	Hysteresis*	±0.02 hPa	±0.03 hPa
	Repeatability*	±0.02 hPa	±0.03 hPa
	Calibration uncertainty**	±70 ppm	±0.07 hPa
	Accuracy at +68°F (+20°C)***	±100 ppm	±0.10 hPa
		Class B	
	Linearity*	±0.10 hPa	
	Hysteresis*	±0.03 hPa	
	Repeatability*	±0.03 hPa	
	Calibration uncertainty**	±0.15 hPa	
BACK to Table of	Accuracy at +68°F (+20°C)***	±0.20 hPa	
Contents	Temperature dependence****	±0.1 hPa	
	Total accuracy		
To INDEX		Class A	±0.15 hPa
		Class B	±0.25 hPa
	Long-term stability		±0.1 hPa/year
PTB 220	¤ Class A / 8001100 hPa /	+68°F (+20°C)	
Price List	* Defined as ±2 standard deviation limits of end-point non-		
	linearity, hysteresis error or repeatability error.		


- linearity, hysteresis error or repeatability error. ** Defined as ±2 standard deviation limits of inaccuracy of
- the working standard including traceability to NIST. *** Defined as the root sum of the squares (RSS) of end-point non-linearity, hysteresis error, repeatability error and calibration uncertainty at room temperature.
- **** Defined at ±2 standard deviation limits of temperature dependence over the operating temperature range.

General

General	
Supply voltage	1030VDC reverse polarity protected
Supply voltage sensitivity	ty negligible
Current consumption	
operation mode	less than 30 mA
with local display	less than 50 mA
hardware shutdown n	node less than 0.1 mA
Serial I/O	RS 232C• full duplex or
	bidirectional TTL level or
	RS 485/422 half duplex
code	ASCII
parity	none, even•, odd
data bits	7• or 8
stop bits	1• or 2
Pulse output	TTL level pulse output at about
1	5 kHz or 50 kHz
Optional analog output	
output range	05VDC•,020mA
resolution	4 Pa
total accuracy	60°85°F (+15+30°C)
class A	±0.25 hPa
class B	±0.30 hPa
(The module provides a	secondary barometer output and is
supplied without a calib	pration certificate.)
Pressure units	hPa•, mbar, kPa, Pa, inHg,
	mmH20, mmHg, torr, psia
Baud rates	300, 600, 1200, 2400, 4800, 9600•
Resolution	
class A 0.01 hPa•	class B 0.1 hPa•
Settling time at power-u	p (one sensor)
class A 3 s•	class B 2 s•
Response time (one sen	sor)
class A 2 s•	class B 1 s•
fast measurement mod	de 0.2 s•
Acceleration sensitivity	negligible
Pressure connector	M5 (10-32) internal thread
Pressure fitting	barbed fitting for 1/8" I.D. tubing
Maximum pressure limit	5000 hPa abs.
Electrical connector	female 9-pin subD
Housing	epoxy painted aluminum
Weight	1 kg

Specifications subject to change without prior notice. • Factory setting

BAROCAP® is a registered trademark of Vaisala Inc.

PTU 200 Combined Pressure, Humidity and Temperature Transmitter

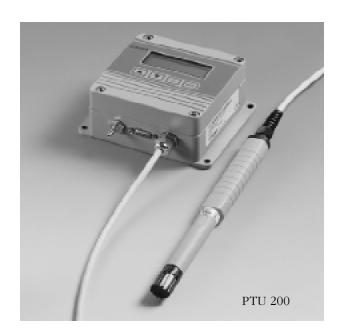
FEATURES/BENEFITS

- Barometric Pressure:
- ± 0.15 hPa (500...1100 hPa /-40...140°F (-40...+60°C) • Temperature and Humidity:
 - ± 0.9°F (-40...+140°F), ±0.36°F @68°F
- ± 0.5°C (-40...+60 °C), ±0.2°C @20°C
- ± 2% RH (0...90 %RH), ± 3 % RH (90...100%RH)
- Remote RH+T probe with 3.5m or 20m cable
- Optional NEMA 4 outdoor installation kit
- RS232C serial interface with NMEA protocol for GPS use
- 12VDC /30mA operation
- Optional LCD display cover

APPLICATIONS:

- Meteorological/Environmental Monitoring
- Calibration laboratory monitoring
- GPS Precipitable Water Vapor detection
- GPS accuracy improvement

THREE-IN-ONE MEASUREMENT


The PTU 200 combines barometric pressure, humidity and temperature measurement in one transmitter. It can be used to improve the accuracy of GPS (Global Positioning System) coordinate measurements. Together with the ground-based GPS receivers, the PTU can also be used to estimate Precipitable Water Vapor (PWV) in the atmosphere: data which can be useful in improving weather forecasting accuracy. The PTU 200 is also an ideal instrument package for use in calibration laboratories and for data which can be useful in improving environmental monitoring applications.

VAISALA'S PROVEN SENSOR TECHNOLOGY

The PTU 200 transmitter is based on Vaisala's PTB 220 digital barometer. For pressure measurement, it uses the BAROCAP® silicon capacitive barometric pressure sensor. The BAROCAP® has excellent measurement repeatability and outstanding temperature and long-term stability. The humidity and temperature probe uses Vaisala's HUMICAP®180 capacitive thin film sensor for relative humidity measurement, with better than $\pm 1\%$ RH annual measurement stability. The temperature sensor is a platinum RTD sensor.

SERIAL COMMUNICATION

An RS232C serial interface is standard with PTU 200 transmitters. The transmitter software is also compatible with major GPS receivers and NMEA (National Marine Electronics Association) coded messages. An optional RS485 interface is also available.

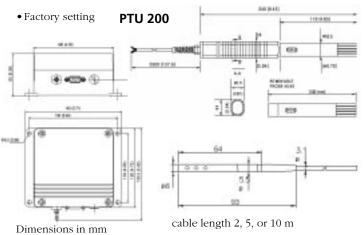
OUTDOOR INSTALLATION KIT

For outdoor use an optimized outdoor installation kit PTU 200 MIK is available. The PTU 200 MIK includes a NEMA 4 rated enclosure for the barometer, a static pressure head and a radiation shield for the humidity and temperature probe. An optional tripod, the PTU 200 TRIPOD, is available to enable quick field setup.

PTU 200 shown with meteorological installation kit (PTU 200 MIK) and tripod.

TECHNICAL DATA - PTU 200

Note: Hectopascal (hPa) is the barometric pressure unit recommended by WMO and also accepted by ISO. 1 hPa = 1 mbar


Barometric Pressure

	Barometric Pressure		
	Operating Range		
	Pressure range	50	001100 hPa
	Temperature range		
	operating	-40+140°F (-40+60 °C)
	with local display	32+140°I	F (0+60 °C)
	storage	-76+140°F (-60+60 °C)
	with local display		-20+60 °C)
	Humidity range	nor	-condensing
	8-		
	Accuracy	<u>Class A</u>	<u>Class B</u>
	Linearity*	±0.05 hPa	±0.10 hPa
	Hysteresis*	±0.03 hPa	±0.03 hPa
	Repeatability*	±0.03 hPa	±0.03 hPa
	Calibration uncertainty**	± 0.07 hPa	±0.15 hPa
	Accuracy at 68°F (+20 °C***	+) ± 0.10 hPa	±0.20 hPa
	Temperature dependence**	**	±0.1 hPa
	Total accuracy including or		
	Class A ±0.15 hPa	Class B	±0.25 hPa
	Long-term stability	±	0.1 hPa/year
	Response time (one sensor	100% response)	-
	Class A 2 s•	Class B	1 s•
	* Defined as ±2 standard	l deviation limits of en	d-point non-
	linearity, hysteresis err		
BACK to	** Defined as ±2 standard		
Table of	the working standard i		
Contents	*** Defined as the root sur		
	non-linearity, hysteres		
	calibration uncertainty		
To INDEX	**** Defined at ±2 standard	•	nperature
	dependence over the		
	Relative Humidity & Ten		
PTU 200	Measurement Range		0100 %RH
Price List	Accuracy at +20 °C (includi	ng non-linearity and h	
	against factory references	ing non micarity and n	±1 %RH
	field calibration against re	ferences +2 %PH	(090 %RH)
	field calibration against re		0100 %RH)
	Typical long-term stability	better than 1 %	
		±0.03 %RH/°F (±0	
	Temperature dependence Response time (90%) at +20		
	Sensor		MICAP® 180
	Measurement Range	-40+140 °F (
	Accuracy <u>Ter</u>	•	<u>iracy</u>
	-40°F (-40 °		
	68°F (20 °		- /
	140°F (+60 °		
	Temperature sensor HMP		
		MP 45D Pt 100 IEC 75	1 1/3 Class E
	Cable length	20 1111	
	HMP 45 A-P	20m with bind	
	HMP 45 D	3.5m	n, hard-wirec
	Pt100 Sensor Head		
	Measurement Range	-40+140 °F (
	Accuracy	±0	.4°F (±0.2°C)
	Sensor	Pt 100 IEC 75	1 1/4 Class E
	Cable length		2m

General

Supply voltage	1030 VDC reverse polarity
Supply voltage	protected
Supply voltage sensitivity	1
Current consumption	88
operation mode	less than 30 mA
with local display	less than 30 mA (without back light)
1 7	less than 50 mA (with back light)
hardware shutdown mo	
Serial I/O	RS 232C • full duplex or
	bidirectional TTL level or
	RS 485/422 half duplex two-wire
code	ASCII
parity	none, even∙, odd
data bits	7• or 8
stop bits	1• or 2
Pressure units	hPa∙, mbar, kPa, Pa, inHg,
	mmH20, mmHg, torr, psia
Humidity units	%RH
Temperature units	°F, °C
Baud rates	300, 600, 1200, 2400, 4800, 9600•
Resolution	
class A	0.01 hPa•
class B	0.1 hPa•
Settling time at power-up	
class A	5 s•
class B	4 s•
Acceleration sensitivity	negligible
Pressure connector	M5 (10-32) internal thread
Pressure fitting	barbed fitting for 1/8" I.D. tubing
Maximum pressure limit	5000 hPa abs.
Electrical connector	female 9-pin subD
Housing	
body	epoxy painted aluminum
RH&T probe	ABC plastic
Weight	
depending on selected	probe 2.3/1.3/1.1 kg

Specifications subject to change without prior notice. BAROCAP® is a registered trademark of Vaisala, Inc.

HMP 45A & HMP 45D Relative Humidity and Temperature Probes; Solar Radiation Shield

VERSATILE PROBES

The HMP 45A and HMP 45D humidity and temperature probes are designed for a wide range of instrumentation e.g. recorders, data loggers, laboratory equipment and weather stations.* They interface easily and are simple to service.

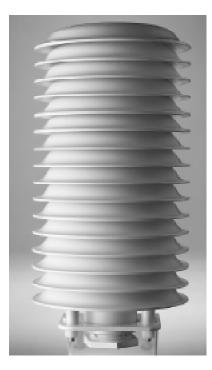
RELIABLE PERFORMANCE IN DEMANDING ENVIRONMENTS

The HMP 45A and HMP 45D provide up to 100% RH measurement with high accuracy. Both feature Vaisala's HUMICAP®180 sensor, one of the most reliable sensors on the market. The sensor can be used in a wide range of environments, has high accuracy, negligible hysteresis and excellent long-term stability - even in very high humidities. It is insensitive to dust and tolerant to most chemicals.

NEW FEATURES

Field calibration is easy with one or two references. The probe head containing the sensor and electronics can be quickly removed from the probe body, a replacement installed and the measurements continued while the other sensor head is calibrated in a laboratory. If necessary, the humidity and temperature readings in the HMP 45A can be checked with Vaisala's HMI 41 humidity indicator on site. Routine checks and calibrations can be made without interrupting measurements for long periods of time.

The combined performance of the HUMICAP[®]180 sensor and improved NEMA 4 protected probe enables you to make accurate and repeatable humidity and temperature measurements with confidence. These probes can be operated from a wide range of supply voltages and have low power consumption. Combine these features with the probes' wide temperature range, temperature compensation and full-scale humidity range and you have a versatile solution for many applications.


SHIELD PROVIDES SENSOR PROTECTION

Vaisala also offers the 2212 HM shield to protect the humidity and temperature sensors from solar radiation and precipitation. It provides excellent ventilation while blocking direct and reflected solar radiation. The 2212 HM's flexible fastening system makes probe installation simple, and an offset U-bolt makes mounting equally as easy.

*The HMP 45A/D is an excellent solution for measuring humidity in weather stations. However, the HMP 243, with warmed sensor head, is a better solution if condensation continuously disturbs measurement.

HMP 45A & HMP 45D humidity and temperature probes for meteorological applications provide EMI/RF protection.

2212 HM shield provides protection from solar radiation and precipitation.

TECHNICAL DATA - HMP 45A, HMP 45D, 2212 HM

GENERAL

RELATIVE HUMIDITY

against factory references

Typical long-term stability

Temperature dependence

Dimensions in mm (inches)

field calibration against references

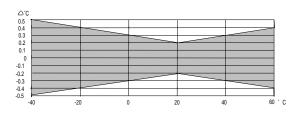
HMP 45A & HMP 45D

Measuring range:

Humidity sensor

Output scale

Operating temperature range	-40+140°F (-40+60°C)
Storage temperature range	-40+176°F (-40+80°C)
Supply voltage	735 VDC
Settling time	500 ms
Power consumption	<4 mA
Output load	>10kohm (to ground)
Weight	350 g (incl. package)
Cable length	3.5 m
Housing material	ABS plastic
Housing classification (electronics)	NEMA 4 (IP 65)
Sensor protection	
standard	membrane filter
	part no.2787HM
option	sintered filter 37 µm
	part no. 6685
	sintered filter 216 µm
	part no. 6686


Accuracy at +68°F (+20°C) (incl. nonlinearity and hysteresis)

Response time (90% at +68°F (+20°C)) 15 s with membrane

TEMPERATURE

HMP 45A	
Measurement range	-39.2+140 °F (-39.2+60 °C)
Output scale	-40+140 °F equals 01 VDC
Accuracy at +68°F (+20 °C)	±0.36°F (±0.2 °C)

Accuracy over measurement range:

Temperature sensor

Pt 1000 IEC 751 1/3 Class B

HMP 45D

grid, part no. 6597

0.8 to 100% RH

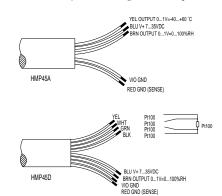
< 1 %RH / year

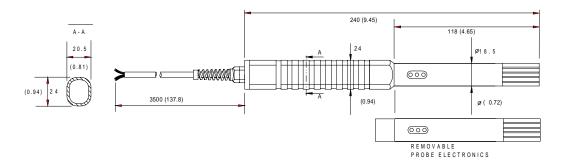
HUMICAP® 180

±2 %RH (0...90 %RH)

±3 %RH (90...100 %RH)

±0.03 %RH/°F (±0.05 %RH/ °C)


±1 %RH


filter

0...100 %RH equals 0...1 VDC

Measurement range	-40+140 °F (-40+60 °C)
Output signal	resistive four wire connection
Temperature sensor	Pt 100 IEC 751
	1/3 Class B

Specifications subject to change without prior notice.

BACK to Table of

To INDEX

HMP

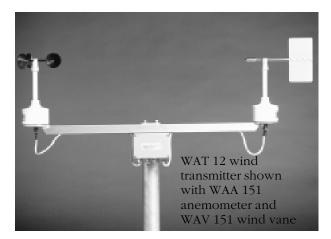
45A/D Price List

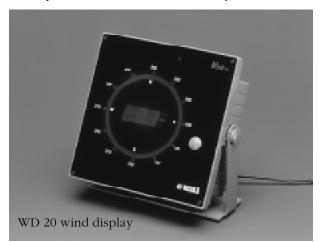
94

Wind Measurement Instruments and Systems for Industrial Applications

WIND SENSORS TO MEET YOUR NEEDS

WMS 301: Vaisala's WMS 301 is a compact sized wind sensor with wind speed and direction capability integrated into one unit. The electronic design makes the sensor suitable for applications where **low power** consumption is essential.


WAT 12: For long distances between the sensor installations and displays (> 100 meters), Vaisala's WAT 12 Wind Transmitter System is the solution. This system is comprised of the WAA 151 anemometer, WAV 151 wind vane, and WAT 12 wind transmitter. The sensors are fast response, low threshold, with **heated shafts for colder climates.** The WAT 12 transmitter converts the wind speed and direction data into two analog current loop signals. The power to the sensors is also supplied through the WAT 12 unit. An **ICE-free heated anemometer, WAA 251**, is recommended where there is a high risk of ice formation.


VERSATILE AND COST-EFFECTIVE WIND DISPLAYS

WD 20: The WD 20 Wind Display is directly compatible with the above wind sensors and offers an economic solution to display instant values of wind speed and wind direction. Features include automatic brightness control, on-line configuration, and capability for desktop, panel or wall mounting.

WD 30: The WD 30 is a multi-channel wind display for displaying and processing wind data. It provides instantaneous, as well as time-averaged data over two and ten minute periods. In addition to the features listed for the WD 20, the WD 30 can be used with up to four WAT 12 wind sensor systems.

TECHNICAL DATA - WIND MEASURMENT SYSTEMS

Dual Reed switch 0.5...60 M/S <0.4 M/S 1Hz~0.7 M/S (<= 10M/S) ± 0.3 M?S

Potentiometer

0...355 degrees

Vref/360= 1 degree

Better than ± 3 degrees

41...+131 °F (+5...+55°C) -76°...149°F (-60...+65°C)

AlMgSi Gray Anodized

PA, reinforced glassfibre

265 (H) X 360 (W) MM

PA, reinforced carbon fiber

Digital-to-analog current loop

<0.1 M/S

3...15 VDC

360G

500 g

WMS 301 Combined Wind Sensor

Anemometer
Sensor/transducer type
Measuring range
Starting threshold
Transducer output
Accuracy

<u>Vane</u>

- Sensor/transducer type Measuring range Starting threshold Transducer output Accuracy
- Supply voltage Operating temperature Storage temperature Body Cups Vane Dimensions Weight

WAT 12 Wind Transmitter

Function

1 difetion	Digital to analog current loop
	converter for Vaisala wind sensors
Temperature range	
operating	-41+131 °F (+5+55°C)
storgae	-76158°F (-60+70°C)
Power	12 VDC to 28 VDC, 30 mA max.
	(incl. sensors, excl. loop current)
Electrical connections	Screw terminals, max wire cross
	section area 1.5mm ²
Signal input from wind	sensors (see above)
Output signals	
Two analog current lo	pops, one for direction, one for speed.
High side drivers; the	loops return to the common signal &
power ground. Loop o	driving voltage typically 10V
Output accuracy	Better than 1% of full scale
Loop current options	0-5 mA; 1-5 mA; 0-10 mA;
	0-20 mA; 4-20 mA
Full scale options	0-360°/0-540° for direction
60 m/	s for speed (optionally larger scales)
Signal cable Preferat	bly 3-pair shielded twisted pair cable
WAA 151 Anemomete	o#
Measuring range	0.475 m/s
Threshold	0.4 m/s
Distance constant	0.4 m/s 4 m
Accuracy below 10 m/s	
Accuracy 1075 m/s	+2%
Sensor-transducer type	LED/phototransistor (chopper)
Operating power suppl	
Heating power supply	20 V, 500 mA
Operating temperature	41+131 °F (+5+55°C)
Storage temperature	-76+158 °F (-60+70°C)
Cup material	Carbon fiber
Aluminum finish	Paint
Dimensions	240 (h) x 86 (diam.) mm

WAV 151 Wind Vane

0360°(wind speed 0.475 m/s)
0.4 m/s
5.6°
0.14
0.4 m
better than ±3 °
Optical code disc
GRAY code, 6-bit parallel
U _{in} =9.515.5 VDC; 20 mA typical
AC or DC; 20 V, 500 mA
0°C -58+131°F (-50+55°C)
-76+158°F (-60+70°C)
nm 300 (h) x 90 (diam.) mm
660 g

WAC 151 Cross Arm Assembly

Length	800 mm
Max. outside diameter for mast tube	60 mm
Cross arm material	Aluminum
Weight	1.5 kg

WD 20/WD 30 Wind Displays

Type WD 20 Type WD 30	Single channel wind display Multichannel averaging wind display
Features:	Automatic brightness control
reatures.	Desktop, panel or wall mounting
	(stand included)
Material:	Aluminum frame, ABS case, grey
Dimensions:	144x144 mm, depth 65 mm
	design allows 120 mm panel mounting
Weight:	
WD 20	580 g
WD 30	610 g
Supply voltage:	10.5 0 15.5 VDC
Power consumption at a	nax. brightness
WD 20	3.8w
WD 30	15w
User Interface:	
Speed	3-digit 7-segment LEDS
Speed min./channel	3-digit 7 segment LEDs
Speed max.	3-digit 7 segment LEDs
Speed unit	Back-illuminated LED; m/s, km/h, kt
Direction	Analog 2 x 36 LED elements in a circle
(inner circle	for direction, outer circle for variation)
Operating mode:	Back-illuminated yellow LED;
	instant, 2 min or 10 min
Environmental:	
Storage temperature	-40+140 °F (-40+60°C)
Operating temperature	
Humidity	2100%
EMC	CE compliant
Vibration test	according to MIL-STD-167-1
Options	
Power supply for 110.	220 VAC

BACK to Table of Contents

To INDEX

Wind

Weight

MAWS 101 Automatic Weather Station for Industrial Applications

The MAWS (mobile automatic weather station) series of small weather stations are new generation AWSs (automatic weather stations) for both permanent installations as well as for those applications requiring portability. MAWS features high performance fitted into a very compact package. Imbedded with sophisticated technology, yet easy to use, MAWS is the ideal choice for a wide range of applications requiring reliable and accurate meteorological measurements and low cost-of-ownership.

FEATURES

- Compact, portable, and light- weight
- Easy to install, configure, and maintain
- Low power consumption for extended operation
- Reliable and accurate
- Extensive software capability
- Multiple serial ports for display and telemetry options.

MAWS IS USER FRIENDLY

MAWS is easy to set up. All sensors are equipped with ready-made cables and connectors for easy installation. Components fit together with ease: no special tools are needed. Once assembled, simply connect the power and MAWS will be fully operational. Sensor measurements, calculations, data logging, and data transmission will be performed according to the user- configured program.

The operation of MAWS can be easily modified with the help of the user-friendly "Lizard" program. Using the ready-made templates, this program guides you through the simple setup routines. Not only is it easy to use, but there are enough setup options to satisfy even the most demanding user.

MAWS IS ACCURATE

Utilizing Vaisala's recognized expertise and fieldproven design, MAWS provides features previously seen only in larger systems. The accurate measurements begin with the sensors.

The basic suite of sensors measures wind, pressure, temperature, relative humidity, and precipitation. In addition, other sensors such as, soil/water temperature(s), solar radiation, net radiation and water level can be added. The sensors are derived from the same field-proven instruments that Vaisala has developed for demanding customers such as the FAA and the military. The use of a 32-bit CPU, a 16-bit A/D conversion, and advanced software ensure the continuous accuracy of your weather information.

MAWS 101 saves you time and money when installing, using, and maintaining a basic AWS. Due to its lightweignt compact design there is no need to install large concrete foundation.

MAWS 101 comes either by itself in its compact enclosure or with a three meter mast. By itself it is ideal for customer-specific installations where the standard tripod or mast installations are not viable solutions.

TECHNICAL DATA - MAWS

GENERAL

Processor	32-bit Motorola	
A/D conversion	16-bit	
Accuracy		
Resistance measurements (H	$(\pm 0.05 \% \text{ F.S.})$	
Voltage measurements	< ±0.2 % F.S.	
Data logging memory	2 MB internal flash	
Inputs	10 analog inputs (diff.)	
	2 counter/frequency inputs	
Internal channel	for PTM16A pressure transducer	
Serial communication	RS-232 standard, optional up to	
	5 pcs with two (2) plug-in slots	
	for communication modules	
	Baud rate 300 9600 bps	

POWERING Voltage

recommended (30 V max.)	
Standard internal battery	1.3 Ah/6 V
Power consumption	
Typically	< 10 mA/6 V
Solar panel	2.2 W/6 V
Optional	2 pcs 2.2W/6 V panels
Mains power (outdoor)	WHP151

ENVIRONMENTAL

	Temperature		
BACK to	Operating	-31° +131	°F (-35° +55°C)
Table of	Storage -58° +15	8 °F(-50° +70°C)), without battery
Contents	Humidity		0 100 % RH
	Wind		
	With tripod mast		up to 35 m/s
To INDEX	With pole mast		up to 60 m/s
	EMI and ESD protection		
	Emissions		CISPR 22 class B
MAWS	Immunity	RF immunity	IEC 61000-4-3
Price List		EFT immunity	IEC 61000-4-3
		ESD immunity	IEC 61000-4-2
	Electromagnetic compatib	ility	IEC-801-4

PHYSICAL

Weight		
Example: portable system with 3 m tripod 15 k		15 kg
(pressure, temperature/humidity and		
wind sensors; 2.2 W solar	panel)	
Basic enclosure		
Material	anodiz	zed aluminum
Ingress protection	NE	MA 4X (IP66)
Dimensions	dia. 120 mm, h	eight 420 mm
Weight		3.0 kg

OPTIONS AND ACCESSORIES

- Communication modules
- Mains power supply
- PC Card modem & adapter
- Carry cases for MAWS201
- Extra 1.3 Ah rechargeable battery
- 35 Ah lithium battery pack (non-rechargeable)
- Hand-held terminal

8 ... 14 VDC

- Spread Spectrum radio (remote)
- Spread Spectrum radio (base)
- YourVIEW display software, standard version
- YourVIEW display software, Internet version

For the latest list of MAWS options, please bookmark Vaisala's web site at www.vaisala.com.

Calibration and Service Laboratory

ISO 9002 CERTIFICATION

Vaisala Inc.'s Woburn, Massachusetts headquarters has earned ISO 9002 certification of its Quality System. Our Calibration and Service Laboratory is an integral part of this Quality System and has been expanded to meet the most demanding customer requirements for calibration traceability and rapid service turnaround.

RETURNING FOR SERVICE

To take advantage of the services presented here, please call Vaisala's customer service department at 1-888-VAISALA or (781) 933-4500. Our customer service representative will assign you an RMA (Return Material Authorization) number for returning your Vaisala instrument for recalibration or repair. Recalibration of other suppliers' relative humidity/temperature instruments is also available. You will be informed of all charges within one week of the calibration lab receiving your instrument.

Capabilities

All Vaisala calibrations comply with ANSI-7540-1-1994

BACK to

Table of Contents

To INDEX

HUMIDITY CALIBRATION

- 100 % NIST traceable calibrations Standard calibrations consist of 4 points with adjustments at 0 % and 75.5 % and linearity checked at 11.3 % and 97.6 %RH.
- **Calibration** Two-pressure generator enables special NIST traceable calibrations:
 - Any points between 10 % to 95 %RH
 - Temperature range 32 to 158 °F (0 to 70 °C)

TEMPERATURE CALIBRATION

- Temperature calibrations from
 - -13 to +257 °F (-25 to +125 °C)
 - NIST traceable temperature calibration between the specified range.

DEWPOINT CALIBRATION

Temperature calibrations from -94 to +68 °F (-70 to +20 °C)
NIST traceable dewpoint calibration between the specified range.

CO₂ CALIBRATION

- Certified CO₂ calibration
- Calibration at 0%, 2000 ppm (0.2%), 3000 ppm (0.3%), and 3%

WARRANTY REPAIR OF VAISALA INSTRUMENTS

For warranty repairs, no authorization from the customer is needed and we guarantee one week turnaround from the date we receive your instrument(s).

NON-WARRANTY REPAIR OF VAISALA INSTRUMENTS

For non-warranty repairs, we will inform you, within one week of receiving your instrument(s), of the charges for the needed repairs. Vaisala then guarantees a one week turnaround from the date we receive your authorization to proceed.

EXPRESS SERVICE

Two-day guaranteed turnaround service is available for a nominal fee.

99

TEL: 1-888-VAISALA (824-7252)

E-MAIL: incsales@vaisala.com

FAX: (781) 933-8029 Access catalog on-line at: www.vaisala.com/inc/ssdcat

Page Blank on Purpose

Product Index

P	Product	Page Number	Product	Page Number
C	Calibration La	boratory Service	HMP 46	
C	CO ₂ Accessor	ies 85	HMP 141	
Ľ	DMP 246		HMP 142	
Ľ	DMP 248		HMP 143	
Ľ	DSS 10		HMP 228	
C	GM 12 A		HMP 231	
C	GM 12 B		HMP 233	
C	GMD 20		HMP 234	
C	GML 20		HMP 235	
C	GML 20 T		HMP 238	
C	GMM 11		HMP 243	
C	GMM 12		HMP 260 EX	5
C	GMM 20 W		HMP 361	
C	GMM 220		HMP 363	
C	GMP 111		HMP 364	
C	GMP 111 E		HMP 365	
C	GMW 20		HMP 368	
Н	IM 34		HMT 360	
Н	IM 44		HMW 21	
Н	HMD 40		HMW 31	
H	IMD 50		HMW 40	
Н	IMD 60		HMW 50	
Н	IMD 70		HMW 60	
Н	IMD 60 OU		HMW 70	
Н	IMD 60 YO		HUMICAP A	ccessories61-62
Н	IMI 38		HUMITTER	
Н	HMI 41		MAWS 101	
H	IMK 15		Meteorologi	cal Probes93-94
H	IMM 210		PTB 100	
H	IMM 22 D		PTB 220	
Н	IMM 30 C		PTB 220 TS	
	IMP 35 E		PTU 200	
	IMP 36 E		Wind Instru	nents, displays, and systems95-98
	IMP 37 E			, 1 , , , , , , , , , , , , , , , , , , ,
	HMP 41		Price List	Cover/Index
	IMP 42			
	HMP 45		Selection Gu	iide Cover/Index
	HMP 45 A			······
	IMP 45 D			

U.S. Price List Table of Contents

	ORDER FORMS	
	HMP 228 Moisture in Oil (pricing and order form)	1
	230's Series	
	HMP 231 Wall Mount (pricing and order form)	2
	HMP 233 Tight Spaces Maximum Operating Temp: 80C/176F (pricing and order form)	3
	HMP 233 Tight Spaces Maximum Operating Temp: 120C/248F (pricing and order form)	4
	HMP 234 Pressurized Spaces (pricing and order form)	5
	HMP 235 High Temperatures (pricing and order form)	6
	HMP 238 Pressurized Pipelines (pricing and order form)	7
	140's Series	
	HMP 141 Wall Mount (pricing and order form)	8
	HMP 142 Duct Mount (pricing and order form)	
	HMP 143 Tight Spaces (pricing and order form)	10
	360's Series	
	HMT 360 Transmitter Unit-HMP 360 Series (pricing and order form)	11
BACK to Catalog	HMT 360 Series Intrinsically Safe Humidity & Temperature Transmitter Probes (pricing and order form)	12
Table of	HMT 361 - Wall Mount (pricing and order form)	13
Contents	HMT 363 - Small Probe (pricing and order form)	14
	HMT 364 - Probe for High Pressures (pricing and order form)	15
	HMT 365 - Probe for High Temperatures (pricing and order form)	16
	HMT 368 - Oil Transmitter Probe for Pipeline Installations (pricing and order form)	17
	240's Series	
	HMP 243 Dewpoint Sensor Head (pricing and order form)	18
	HMP 243 Dewpoint & Temperature Sensor Heads (pricing and order form)	19
	DMP 246 Extremely High Temperatures (pricing and order form)	20
	DMP 248 Low Dewpoints (pricing and order form)	21
	HMK 15 Calibrator (pricing and order form)	22
	PTB 220 Pressure Transmitter (pricing and order form)	23
	PTU 200 Transmitter (pricing and order form)	24

U.S. Price List Table of Contents (page 2)

icators & Probes 26	
	:
See Order Guides Pages 8-10	
See Order Guides Pages 2-7	
See Order Guides Pages 18-21	
Transmitters See Order Guides Pages 12-17	
	K to
	alog e of
	tents
	CK to
	ex e 1

Price: F.O.B. Woburn, Massachusetts

Delivery: Generally within 14 days A.R.O.

Prices are subject to change without notice. Please contact factory to confirm prices.

HUMICAP®, INTERCAP®, BAROCAP®, and HUMITTER® are trademarks of Vaisala

HMP 228 Moist			_		<u> </u>		_							<u> </u>			-					<u> </u>			
		-	-		-		-	H	MP	228					1		-								PRICE
Transmitter type	aw	+T	-				-																		\$1,7
Transmitter	no	dis	play	/							1														
	dis	play	anc	l key	/pac	1					2														\$2
Sensor head cable	2 m	า										A													
length	5 m	۱	1									В													\$1
	10	m										С													\$3
Pow er supply,	24	VA	C/VI	DC									0												
alarm output		5 V A											1												\$1
	_			-	-	-	-	-				-	2				_								\$1
	_		⊦ ala	rm o		ut ur	nit						3												\$1
0 · · · ·	_				uipi								<u> </u>	A											ψ1
Serial bus	_	232		100																					.
			/RS4											B											\$1
			curr											С											\$1
Sensor protection	_		HM	Sta	inle	SS	ste	elfi	lter						1								<u> </u>		
Analog output	_		m A													Α	Α								
signals	0	20	mA													В	В								
	0	1V														С	С								
	0	5 V	/													D	D								
	0	10	V													Е	Е								
					1		Ch	1								_	1								
							Ch	2															t		
Analog output	aw	(0.	1)															A	А						
signals (Ch1, Ch2)	_		ige I	belo	w)	Т(Ran	ae I	belo	w)								В	в						
	- (, ,	• 、	Ch			,		-	-	-		-	-	-	_						
	_		-	-	-	-	Chi									-	-								
Temperature	-20		-80°(~		(-1			6 °F)							_				A					
range	_		60 °(В					
range	_						0+										-								
	_		100		_				2°F)				-	-			-			C					
	_		180	_		_	0+													D					
			0 °C			(+3	32	-212	: °F)											E					
	Oth	ner	(sp	ecif	y)															X					
Output units	m e	etri	C																		1				
	nor	n-me	etric																		2				
Installation kit	no																					A			
	Bal	lva	lve s	set (DMI	P 24	8 B\	/ S)														В			\$
Pow er cord	No	pov	ver	cord	I																		3		
	6 F	t. A	/C p	ow e	rco	rd F	9/N 8	5-20	0671														2		\$
Cable Connections	NP	T 1/	2 Co	ndu	it Fit	ting	P/N	45-2	2061	8													1	А	
	PG	9 C	able	Gla	nd	-											1							в	
																							тот		
	aw	= V	v ate	r ac	l tivitv	/	-				-		-	-		-	-	-				-			
							-						-	-			-	-	-		TO	ΓΔΙ	VAI		
	_	-	-	-	-	-	-						-	-			-	-	-				• ~	-92	
				1	<u> </u>											-	-								
The highlighted section	s are i	inclu	uded	l in t	he p	rice	s of	the	bas	ic ve	ersio	ons.					-					<u> </u>	<u> </u>		
							_										_					<u> </u>	<u> </u>		
Example of order code		-																				<u> </u>	<u> </u>		
HMP 22	28 1	A	0	Α	1	Α	A	Α	В	Α	1	Α	3	в											
																							_		
							_	_	_				_	_	_	_	_	_	_	_				_	
	_							_								_	-			_					

BACK to Catalog Table of Contents

BACK to Price List Table of Contents

BACK to Tech Data Sheet

IMP 231 for W				-	-						-	-								-					
		-	-	-			нм	P 2	231			A										A		PRICE	
Fransmitter type	RH	l + T	-						-	A														\$950	
		, Т,		a+T	w+x	+h				D														\$1,150	
Transmitter cover	_	dis									1													• , • •	
	_	aldi			d ke	vpa	d				2													\$295	
Probe length	_	0 m		y un		ypu	u				-	A												\$200	
Pow er supply	_	VAC																							
Serial bus module	_	23											0	A											
				10	n																			¢140	
	_	485						-	-	-	<u> </u>	-	_	B										\$140	
		ital c								<u> </u>	-	_	_	С										\$140	
Sensor protection	_	152													1									\$50	
	_	20				stair	less	s ste	eln	ettin	g)				2									\$30	
	_	562													3									\$25	
	172	230	(PTF	E m	emb	oran	e)								5									\$25	
Analog output	4	.20	mA													Α	Α								
signals	0	.20	mΑ													В	в								
Ch1 and Ch2)	0	.1 \	/													С	С								
	0	.5 \	/													D	D								
	0	.10	V													E	E								
								cha	anne	el 1															
								cha	anne	el 2															
Parameters for the	RH	1	(0	.100	%R	H)												1	1						
analog outputs	т		(rar	nge:	see	belo	ow)											2	2						
Ch1 and Ch2)	Τd)+((-40	+'	140	°F)						3	3						
	a		(0	.160	g/n	n3)			(0 .	69.	9 gr	/ ft3)						4	4						
	Τw			.+60						2 +								5	5						
	x			.160			a)					r/ lb)	-			-	-	6	6						
	h	-	_) +								97.8		(lb)		-		7	7						
		-	(- 0		+00	1.07	Kg)		anne							-		-	'						
	_	-	-	-	-		-		anne		-	-				-	-							,	
)+	0.0				1.10			;i Z		_					_								
Temperature	_																			A					
ange	_)+		-0	-40					-		-	-			<u> </u>	-			B					
(measurement)		60	-			+3	2.#	140	F	-	-					-	_			С					
	_	her	(Sp	eci	fy)															X					
Jnits (local display		tric																			1				
and serial bus)	no	n-m	etri	С																	2				
Nounting flange		flaı	-											1	1			1	1	_		Α			
Cable Connectors	N	РТ	1/2	Co	ndu	it F	ittir	ng F	₽/ N	45	-20	618											Α		
	PC	G 9	Cal	ble	G la	nd								÷			_			_			В		
																						тот	ΓAL		
	RH	= R	elat	ive H	Hum	idity			а	= At	solu	ute H	lum	idity	g/m	3						C	QΤΥ		
	Т	= T	emp	erat	ure				x	= Mi	xing	Rat	io g	/Kg						тот	ΓAL	VAL	UE		
	Τd	= 0	Dew	poin	tΤe	mpe	ratu	re	Τw	= W	/ et l	Bulb	Ter	nper	atur	е									
	h	= E	ntha	alpy																					
The highlighted sections	s are i	nclu	ded	in th	ne pi	rices	oft	he b	basio	c ve	rsior	ıs.													
Example of order code v	with ty	pica	lset	tings	s:																				
HMP 23	81 A	1	А	0	А	2	А	А	1	2	Α	1	A	В											
			<u> </u>	-				<u> </u>	<u> </u>	<u> </u>		<u> </u>										<u> </u>			
	_	-	-	-			-	-	-	-	-		-			-	-					-			
		-	-	-	-		-	-	-	<u> </u>	-	<u> </u>	-			-	-			<u> </u>		-			
	_		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-								
	_							-			-					-	-			-		-			

BACK to Catalog Table of Contents

BACK to Price List Table of Contents

BACK to Tech Data Sheet

		-	-	-		-	ЦМ		233						-		-			-	-				PRICE
Transmitter type	RH	1 + T					HW	IP 2	233	A															\$99
				-a+T	w+x	:+h				D															\$1,19
Transmitter cover		dis									1														+ . ,
	_		-	, ay ar	nd k	evpa	ad				2														\$29
Cable length				₽, + 8				176	°F)		A													+
<u> </u>				+80								В													\$13
	_			, +80								С													\$17
Pow er supply,	_	VA										•	0												v
alarm output		5 V											1												\$19
alarmoutput		0 V /		-		-	-	-			-	-	2												\$19
	-	-	-	rm o	utni	it ur	hit	-			-	-	3												\$16
Serial bus module	_	23		1111 0	utpt						-	-	5	A	_										φιυ
	_			S 42	2									B											\$14
	-			-		-	-	-			-	-		C											
Concernation		-		ent l	<u> </u>					<u> </u>	-	-		C	4										\$14
Sensor protection	_		•	ered						,	441.00				1										\$5
	_			(PPS	-	a & s	stain	iess	stee	eine	tting	1)			2										\$3
			·	S Gri			<u> </u>	-	_		_	_			3										\$2
A 1 4 1	_			TFE	men	nbra	ne)								5					-	 				\$2
Analog output		.20		-												Α	Α				<u> </u>				
signals		.20		۱ <u> </u>				<u> </u>			<u> </u>	<u> </u>				В	В			1	 				
(Ch1 and Ch2)		.1		_				<u> </u>								С	С			1	<u> </u>				
		.5 1														D	D								
	0	.10	V													Ε	Ε								
												cha	anne	1											
												cha	anne	12											
Parameters for the	RH	1	(0.	100	%R	(H)												1	1						
analog outputs	т		(ra	nge:	see	bel	ow)											2	2						
(Ch1 and Ch2)	Τd		(-4	- 0+	100	°C)			(-40)+	212	°F)						3	3						
, , , , , , , , , , , , , , , , , , ,	а		_	600								, / ft3)						4	4						
	Τw		_	+10	-							2 °F)						5	5						
	x			.500			a)						d.a.)			-	6	6						
	h		_	01									Btu/					7	7						
			1.				kg)	ch	anne									<u> </u>							
		-	-	-			-		anne		-	-			-	-	-								
Temperature	20)4	. 0 0	° C	_			_							_	_	-			A					
(measurement)	_))+					0													C					
(measurement)					: .)	-4	0	+1	10		-	-			-	-	-			x					
Units (local display		tric	-	pec	<u>'' y)</u>				_								-			^	1				
(17																									
and serial bus)		<u>n-m</u>	etri	c								_					_			_	2	Ļ			
Installation kit for	no																					A			<u>.</u>
duct mounting				Cab		(+17	6°F)													В			\$4
Power Cord	-			erco																			3		
				powe																			2		\$1
Cable Connections	N	РТ	1/2	Co	ndu	it F	ittir	ng F	₽/ N	45	-20	618												Α	
	PC	G 9	Ca	ble	Gla	nd								_										В	
																							то	ΓAL	
	RH	= R	lela	tive I	lum	nidity	·		а	= At	osoli	ute H	lumi	dity	g/m	3							0	QTΥ	
	Т	= T	emp	oerat	ure				x	= Mi	ixing	Rat	tio g/	/Kg							то	ΓAL	VAL	UE.	
	Τd	= [Dew	poin	t Te	mpe	eratu	re	Tw	= W	/ et l	Bulb	Ten	nper	atur	е									
	h	= E	Enth	alpy																					
The highlighted sections a	are i	nclu	ded	in th	ne p	rices	s of t	he l	asio	ve	rsior	is.													
Example of order code wit	th tv	pica	l se	ttina	S:																				
HMP 233				_		2	A	A	1	2	A	1	A	3	В	İ	-			-	-				
			- · ·	<u> </u>		-				_		-		<u> </u>	_	-	-				-				
	-		-	-		-					-	-					-			-	-				
	-	-	-	-	-	-	-	-			-	-			-	-	<u> </u>		<u> </u>	<u> </u>	<u> </u>				
	L	-	-	-		-	-	-			-	-	-		-		-			-	-				
			1	1		1	1				1	1	1		I		I			I	L			L	
				_		_	_	_	_		_	_			_	_	_		_	_					
		-		-											-										

BACK to Catalog Table of Contents

BACK to Price List Table of Contents

BACK to Tech Data Sheet

HMP 233 for Tight Spaces Maximum Operating Temperature: 80C°/176°F

HMP 233 for Tight Spaces Maximum Operating Temperature: 120C°/248°F

	+		(56		ge 3 fo							'			-+						PRICE
T	-				HMP 2				_							-+					
Transmitter type	RH			_			4		_												\$1,2
	_		d+a+T	W+X	+h		D	_	_							_					\$1,7
Transmitter cover		disp						1													
	_		olay an					2													\$2
Cable length	2 m	n cabl	e, +12	0 °C	(+248	°F)		D													
	5 m	n cabl	e, +12	0°C				E													\$1
	10 1	m cat	ole, +1	20 °C	;			F													\$2
Pow er supply,	_	VAC/				<u> </u>			0												
alarm output	_	5 VAC							1							_					\$1
alalin output	_	VAC	_				-		2							-	_				\$1
					+		-		_												
	_		alarm o	Juipu	t unit		_		3												\$1
Serial bus module	_	232								Α											
	RS	485/	RS 42	2						В											\$1
	digi	ital cu	rrent lo	оор						С											\$1
Sensor protection	164	152 (s	intered	d filte	r, stainle	ess ste	el)				1										\$
					& stain			nettin	a)		2										\$
			PS G						5/	-	3					_	_				\$
	_		TFE n	,	rano)		-		-		5										\$
		.20 (P		ULITO					-		5	4									1
Analog output												A	A								
signals	_	.20 r	nA						_			В	В								
(Ch1 and Ch2)	_	.1 V										С	С								
	0	.5 V										D	D								
	0	.10 \	/									Ε	Ε								
								cł	anne	el 1											
	+-			\square			\rightarrow		anne												
Parameters for the	DH	1(0_1	00 %F	<u>р</u> и)					anne				-	1	1						
	_)										_						
analog outputs	_		e: see		w)										2						
(Ch1 and Ch2)	_	· ·	.+100					212 °F	_					3	3						
	а	(06	00 g/	m3)				gr/ft3						4	4						
	Τw	(0+	·100 °(C)		(+32	+2	212 °F)					5	5						
	х	(05	00 g/	kg d.	a.)	(0	350)0 gr/ l	o d.a	.)				6	6						
	_		. 1500			(-17.)	2	644.9	Btu/	lb)				7	7						
	+					annel				.,											
						annel	_	-	-				-								
	20		20 °(~	-4		_						_			в					
Temperature range																					
(measurement)	_		20 °C		-40	+248	8°I	F	_							D					
	Oth	her (Spec	ify)												x					
Units (local display	me	tric															1				
and serial bus)	nor	n-me	tric														2				
Installation kit for	no																	Α			
duct mounting	ves	: +12	o °C ca	able	(+24	8 °F)	T		1				_					С			\$
Power Cord			verc		、 = ·	,			-	-								-	3		
		-			rd P/N	85_20	671												2		\$
1	100	·. /\/ \				55-20			1				-			_	_		~		ф
Cable Connections			20-	n d !	6 E1441	a D/	v /	5 00	610						- I	- I.				A	
Cable Connections	NP	Τ 1/			t Fittin	g P/I	V 4	5-20	518											В	
Cable Connections	NP	Τ 1/	2 Col able (g P/I	V 4	5-20	518	1						-			T C ·		
Cable Connections	N P P G	9 C	able (Glan	d														тот		
Cable Connections	<i>NP</i> <i>PG</i> RH	2 7 1/ 9 C = Re	a <i>ble</i> lative	<i>G la n</i> Humi	d	a		Abso	lute H			g/ m	3						G	ΩTY	
Cable Connections	NP PG RH T	2 T 1/ 9 C = Re = Te	a b le lative mpera	<i>G la n</i> Humi ture	dity	a x			lute H			g/ m	3				гот		_	ΩTY	
Cable Connections	NP PG RH T	2 T 1/ 9 C = Re = Te	a b le lative mpera	<i>G la n</i> Humi ture	d	a x	 = : =	Abso	lute H g Rat	io g	/Kg						ГОТ		G	ΩTY	
Cable Connections	NP PG RH T	2 T 1/ 9 C = Re = Te = De	able lative mpera ewpoir	<i>G la n</i> Humi ture nt Tei	dity	a x	 = : =	Abso Mixin	lute H g Rat	io g	/Kg						гот		G	ΩTY	
Cable Connections	NP PG RH T Td	2 T 1/ 9 C = Re = Te = De	a b le lative mpera	<i>G la n</i> Humi ture nt Tei	dity	a x	 = : =	Abso Mixin	lute H g Rat	io g	/Kg					7	гот		G	ΩTY	
	NP PG RH T Td h	2 T 1/ 9 C = Re = Te = De = En	able lative mpera ewpoir thalpy	Glan Humi ture nt Tei	dity mperatu	a x re T		= Abso Mixin = Wet	lute H g Rat Bulb	io g	/Kg						гот		G	ΩTY	
The highlighted sections	NP PG RH T Td h s are ir	PT 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in t	Glan Humi ture ht Tei he pr	dity mperatu	a x re T		= Abso Mixin = Wet	lute H g Rat Bulb	io g	/Kg					1	ГОТ		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature					гот		G	ΩTY	
The highlighted sections	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in t	Glan Humi ture nt Ter he pr s.	dity mperatu	a x ure T the ba	- = w = sic	= Abso Mixin = Wet	lute H g Rat Bulb ns.	io g	/Kg						ГОТ		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature					ΓΟΤ		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature				1	ΓΟΤ		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature				1	ΓΟΤ		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature				1	ΤΟΤ		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature					TOT		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature					ΓΟΤ		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature					ΓΟΤ		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature					ΓΟΤ		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature					ΓΟΤ		G	ΩTY	
The highlighted sections Example of order code w	NP PG RH T Td h s are ir vith typ	27 1/ 9 C = Re = Te = De = En nclude	able lative mpera ewpoir thalpy ed in the setting	Glan Humi ture nt Ter he pr s.	d dity mperatu ices of	a x ure T the ba	- = w = sic	Abso Mixin Wet	lute H g Rat Bulb ns.	iog, Ten	/Kg	ature					ΓΟΤ		G	ΩTY	

HMP 234 for Pressurized Spaces

ļ	—				Tw+>	(+h				D															\$2,435
-	Transmitter cover	_	disp								1														6
-	Oakla laa siti				nd ke			150	• F \		2														\$295
	Cable length	_					(+3	556	F)			A													@4=0
-					80 °C 180 °							B C													\$150 \$350
-	Pow er supply,		/AC/			<u> </u>							0												\$3 <u>5</u> 0
	alarm output		VAC										1												\$190
-	alarmoutput		VAC										2												\$190
-					outp	ut un	it						3												\$165
-	Serial bus module	_	232									-		A											\$.00
-			485/		22									В											\$140
		digit	alcu	rrent	loop									С											\$140
Ī	Sensor protection					er, sta	ainles	s ste	el)			·		·	1										\$50
		167	20 (P	PS G	Frid &	stain	less	steel	nettir	ng)					2										\$30
		172	30 (P	TFE	meml	brane	e)								5										\$25
-	Analog output		20 n													Α	Α								
	signals		20 n	nA												В	В								
	(Ch1 and Ch2)		1 V													С	С								
			5 V													D	D								
		0	10 V	/												Ε	E								
								<u> </u>					nnel	_											
-	Deremeters for the	D 11	10	100.0				_				chai	nnel	2					4						
-	Parameters for the				%RH) ee be													1	1						
-	analog outputs (Ch1 and Ch2)	_		-	ee be 00 °C			40	+212) °E/								2	2 3						
			· ·		g/ m3)				+212 62 gi								-	3	4						
			(0						. +21									4 5	4 5						
		x			g/kg (d.a.)			3500									6	6						
		h			00 kJ				2 64									7	7						
									nnel '																
									nnel 2																
	Temperature		+8						. +1											Α					
	range	_	+1						. +24											В					
	(measurement)		+1						. +3:											С					
to			+8						+											D					
g			+1						+2											E					
of			+1		°C cify)			-4.	. +3:	76 °.	r									F X					
nts	Units (local display	met		spe	cny)															•	1				
	and serial bus)		nc n-me	tric																	2				
-	Mounting flange				vaila	ble																Α			
	Power Cord		pow																				3		
List						rd P/	'N 85	5-206	71														2		\$10
of	Cable Connections						tting			206	18													Α	
nts					Gla																			В	
					Hum									nidity g	g/ m 3	3								TAL	
					ature						Mixi	<u> </u>												QTΥ	
to						empe	rature	e		IW:	= W e	t Bul	р Те	mpera	ature						Т	OTAL	_ VAI	LUE	
ŀ	The highlighted		= En			ricc	of 11	0 6 -																	
-	The highlighted sections	are in		∍u in	ine p	nces	υιτή	e ng	SIC VE	515101	15.										$\left - \right $				
-	Example of order code wi	th tvn	ical «	settin	as																				
Ī	HMP 234				0	А	1	A	A	1	2	A	1	A	3	В				<u> </u>				\rightarrow	
ŀ										-															
ŀ																									
-																									
		ļ																							
_																									
																	1							- I	
-																									

HMP 235 for High Temperatures

BACK to Catalog Table of Contents

BACK to Price List Table of Contents

	HMP 235	PRICE
Transmitter type	RH+T A	\$1,340
	RH+T+Td+a+Tw+x+h D	\$1,840
Fransmitter cover	no display 1	
	local display and keypad 2	\$295
Cable length	2 m cable, +180 °C (+356 °F) A	
	5 m cable, +180 °C B	\$150
	10 m cable, +180 °C C C	\$350
Pow er supply,	24 VAC/VDC 0	
alarm output	115 VAC	\$190
	230 VAC 2	\$190
	24 V, + alarm output unit 3	\$16
Serial bus module	RS 232C A	
	RS 485/RS 422 B	\$140
	digital current loop C	\$140
Sensor protection	16452 (sintered filter, stainless steel) 1	\$50
	16720HM (PPS grid & stainless steel netting) 2	\$30
	16562 (PPS Grid) 3	\$2
	17230 (PTFE membrane) 5	\$25
Analog output	420 mA A A	
signals	020 mA B B	
(Ch1 and Ch2)	01 V C C	
· · · · · · · · · · · · · · · · · · ·	05 V D D D	
	010 V E E	
	Channel 1	
—	channel 2	
Parameters for the	RH (0100 %RH) 1 1	
analog outputs	T (range: see below) 2 2	
(Ch1 and Ch2)	Td (-40+100 °C) (-40 +212 °F) 3 3	
	a (0600 g/m3) (0 262 gr/ft3) 4 4	
	Tw (0+100 °C) (+32 +212 °F) 5 5	
	x (0500 g/ kg d.a.) (0 3500 gr/ lb d.a.) 6 6	
	h (-40 1500 kJ/kg) (-17.2 644.9 Btu/lb) 7 7 7	
	channel 1	
	channel 2	
Temperature range		
1 0		
(measurement)	0+180 +32 +356 °F B	
	Other (Specify) X	
Units (local display	metric 1	
and serial bus)	non-metric 2	
Mounting flange	no mounting flange A	
	stainless steel flange C	\$60
Power Cord	No power cord 3	
	6 Ft. A/C power cord P/N 85-20671 2	\$10
Cable Connections		A
		B
	TOT	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TY
	T = Temperature x = Mixing Ratio g/Kg TOTAL VAL	JE
	Td = Dewpoint Temperature Tw = Wet Bulb Temperature	
	h = Enthalpy	
The highlighted sections a	re included in the prices of the basic versions.	
-		
Example of order code with	h typical settings:	
	235 A 1 A 0 A 1 A A 1 2 A 1 A 3 B	
HIMP.		

HMP 238 for Pressurized Pipelines

Transmitter type	RH	+T					P 2		A			İ –			1				1	r	t –			\$1,620	
			Td+	a+T	w+x-	-h			D											1				\$2,120	
Transmitter cover	_	dis							_	1		1			1					1	1			¥=,120	
	_				dke	/pa/	4			2		1			1					1	1			\$295	
Cable length	_				180		_	+35	6°1		A	-				-	-							\$ 200	
oublo longin) °C	•	1		• •	/	В				-									\$150	
					, c 30 °C						C				_	-	-				_			\$350	
Pow er supply,	_	VAC			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						0	0			_	-	-							ψ 3 50	
alarm output		5 V A										1												\$190	
	_) V A				_	_					2				_	_							\$190	
					utpu	- un	it					2				_	_								
Carial hus madula				III U	utpu	un	n					3			_	_	_							\$165	
Serial bus module	_	23		40	2								A											¢4.40	
		485				_						-	B			_	_							\$140	
0	<u> </u>	tal c			<u> </u>	1 -	the La		1				С			_	_							\$140	
Sensor protection	-			ered	filter	, sta	ainle	SS SI	eel)					1	Ļ		-							\$50	
Analog output		.20													Α	A									
signals		.20													В	В	_								
(Ch1 and Ch2)	_	.1 V										-		_	С	С				1	1				
	_	.5 V										-			D	D				1	1				
	0	.10	V												E	Ε				1	L				
								nne												1	1				
							cha	nne	2																
Parameters for the	-	(0															1	1							
analog outputs		•	•		belo	w)											2	2							
(Ch1 and Ch2)		(-40						40.			,						3	3							
	_	(0		•				02		-							4	4							
		(0						+32									5	5							
	x	(0	.500	g/k	g d.a	a.)		(0	350)0 g	r/ lb	d.a.)				6	6							
	_				kJ/ł			(-17	.2 .	64	4.9 I	Btu/	lb)				7	7							
								nne																	
							cha	nne	2										1	1	1				
Temperature	-20)+	80	°C			('-4		+17	6°	F)								A		1				
range)+			:	_	-												В		1				
(measurement)	_)+				_	•												C	1					
	_)+				_	•	0			-								D						
)+		-	:			0								-	-		E						
)+						0								-	-		F						
					ify)	_		• • •			.,				-	-	-		X						
Units (local display	-	tric	(0)		<u>,</u> ,							-			-				~	1	-				
and serial bus)		n-m	o tri	~																2					
Mounting flange	_				flan	a e						1		-	-	-	-		1	4	A				
mounting hange				-	ball v	-	a e o	t													D			\$65	
Power Cord	_	p 22				aive	- 50	،				1			1				1	1	U	3		φ00	
						4 D /	NL O	5 20	674													-		¢10	
Coble Composite					rcor						200	4.0		-	-	-	-	-	-	-	-	2		\$10	
Cable Connection					dui		ting	у Р/	N 4	45-2	206	18											A		
	PG	9 (ab	ie C	Slan	a																T	B		
						4:0			_						<u> </u>		-	-	-	-	-	тот			
	_				lumi	dity							lum			13	-		-	7.0			ΩTY		
											-		io g	-	_		-	-	-	10	I AL	VAL	UE		
					t Ter	npe	ratu	re	ľw	= W	/etE	∃ulb	Ter	nper	ratur	e	-	-	-	-	-				
	h		ntha										-	-	-	-	-	-	-	-	-				
	aro ir	nclu	ded	in th	ie pri	ces	of t	he b	asic	ve	rsior	ıs.	<u> </u>			_	_		_	<u> </u>	<u> </u>				
The highlighted sections a																									
			l set		_																				
Example of order code wit	th typ	-		0	Α	1	А	А	1	2	Α	1	А	3	В										
	th typ	-	A	0	_																				
Example of order code wit	th typ	-		0								1 7	1	I	1	1	1						- T		
Example of order code wit	th typ	-		0																					
Example of order code wit	th typ	-										-				-	-		-						
Example of order code wit	th typ	-																							
Example of order code wit	th typ	-																							
Example of order code wit	th typ	-																							
Example of order code wit	th typ	-																							
Example of order code wit	th typ	-																							
Example of order code wit	th typ	-																							
Example of order code wit	th typ	-																							

BACK to Catalog Table of Contents

BACK to Price List Table of Contents

140's Series HMP 141 for Wall Mounting

				H	MP 1	41A					1	Α	1		PRIC
Signal	volt	age -	no e	displa	ay		Α								\$84
output	02	0 mA	- no d	lisplay	,		В								\$8
	42	0 mA	- no d	lisplay			С								\$8
	volta	ge - v	vith di	splay			D								\$1,0
	02	0 mA	- with	displa	ay		Е								\$1,0
	42	0 mA	- with	displa	ay		F								\$1,0
Output	0 1	1 V						1	1						
ranges	05	V						2	2						
	01) V						3	3						
	curre	ent ou	itputs					4	4						
					humi	dity									
					temp	eratur	e								
Temperature	-40.	+60	°C							Α					
range	-40	+140	°F							В					
Probe length	55 r	nm									1				
Mounting flange	no											A			
Protection lid	yes												1		
for probe															
Cable feedthrough	for s	surfa	ce m	ount	ing									A	
	for m	ountir	ng on	a jun	ction	box								В	
	for m	ountir	ng on	a jun	ction	box							T	B OTAL	
	for m	ountir	ng on	a jun	ction	box							T		
	for m	ountir	ng on	a jun	ction	box						тот		OTAL	
The highlighted sections a							asic v	ersior	15.			тот		OTAL QTY	
The highlighted sections a							asic v	ersior	IS.			тот		OTAL QTY	
	are inc	cludeo	d in th	e pric			asic v	ersior	IS.			тот		OTAL QTY	
	are ind	cludeo	d in th	e pric			asic v A	ersior 1	IS.			тот		OTAL QTY	
Example of order code wit	are ind	cludeo cal se	d in th	e pric	es of	the ba						тот		OTAL QTY	
Example of order code wit	are ind	cludeo cal se	d in th	e pric	es of	the ba						тот		OTAL QTY	
Example of order code wit	are ind	cludeo cal se	d in th	e pric	es of	the ba						тот		OTAL QTY	
Example of order code wit	are ind	cludeo cal se	d in th	e pric	es of	the ba						TOT		OTAL QTY	
Example of order code wit	are ind	cludeo cal se	d in th	e pric	es of	the ba						TOT		OTAL QTY	
The highlighted sections a Example of order code wit HMP 141	are ind	cludeo cal se	d in th	e pric	es of	the ba								OTAL QTY	
Example of order code wit	are ind	cludeo cal se	d in th	e pric	es of	the ba						TOT		OTAL QTY	
Example of order code wit	are ind	cludeo cal se	d in th	e pric	es of	the ba								OTAL QTY	
Example of order code wit	are ind	cludeo cal se	d in th	e pric	es of	the ba								OTAL QTY	

BACK to Catalog Table of Contents

BACK to Price List Table of Contents

HMP 142 for Duct Mounting

				Н	MP 1	42A							1	Α	0	С	PRICE	
Signal	volt	age		no d	displa	ay	Α										\$930	
output	02	0 mA		no d	isplay		В										\$955	
	42	0 mA		no d	isplay		С										\$955	
	volta	age		with	displa	y	D										\$1,110	
	02	0 mA		with	displa	y	Е										\$1,135	
	42	0 mA		with	displa	y	F										\$1,135	
Output	0	1 V						1	1									
ranges	05							2	2									
0	01							3	3									
		ent ou	tputs					4	4		 							
					humi	ditv												
	-				<u> </u>	eratu	re				 							
Temperature	-40	+60	<u>) °C</u>							L		Α						
range		.+140										В						
Probe length		mm										-	1					
Mounting flange	no													A				
Protection lid	no														0			
for probe	ne			<u> </u>							 							
Cable feedthrough	for	duct	mouu	ntina										-		С		
Cable recultitough	101														т	OTAL		
											 					QTY		
											 			TOT		ALUE		
											 			101		ALUE		
The highlighted sections	are in	cludeo	d in th	e pric	es of	the ba	asic v	ersior	ns.		 							
Example of order code wi	-										 							
HMP 142	A	A	1	1	A	1	A	0	С		 							
	-																	
	-										 							
	-										 			-				
	-			<u> </u>							 <u> </u>	<u> </u>						

BACK to Catalog Table of Contents

BACK to Price List Table of Contents

HMP 143 for Tight Spaces

				H	MP 1	43A										0		PRICE
Signal	volt	age		no c	displa	у	Α											\$895
output	02	0 mA		no d	isplay		В											\$925
	42	0 mA		no d	isplay		С											\$925
	volta	age		with	display	y	D											\$1,075
	02	0 mA		with	display	y	Е											\$1,100
	42	0 mA		with	display	y	F											\$1,100
Output	0 :	1 V						-			1	1						
ranges	05	V									2	2						
	01	0 V									3	3						
	curre	ent ou	tputs								4	4						
					humic	dity												
					tempe	eratui	e											
Temperature	-40.	+60	°C										A					
range	-40	.+140	°F										В					
Sensor head cable	2.5	m												2				
length	Exte	ende	d cal	ble /	mete	r \$2.	85 (spec	ify le	ngth)			X				
Mounting flange	no														A			
	yes														В			\$4
Protection lid	no															0		
for probe																		
Cable feedthrough	for a	surfa	ce m	ount	ing												A	
	for m	nountir	ng on	a jun	ction b	юх											В	
																т	OTAL	
																	QTY	
															тот	AL V	ALUE	
The highlighted sections a	are ind	clude	d in th	e pric	es of t	the ba	asic v	ersio	ns.									
Example of order code wit																		
HMP 143	Α	А	1	1	А	2	А	0	А									
	<u> </u>																	
	<u> </u>																	
	<u> </u>				I													

HMT 360 Transmitter Unit for HMP 360 Series Humidity and Temperature Probes

ransmitter Unit			HMT	360									PF	RIC
Transmitter type	RH+T				A								\$	51,4
	RH+T+Td+a+Tw+x				D								\$	51,9
Display on cover	no				1									
	yes			TT	2									\$
Signal output	1 analog output channel (Ch	1)		4 2	20 mA		1							
	2 analog output channels (Ch1	-			20 mA		2							\$2
	LonWorks field bus (no analog o			TP7	_		3							\$2
Analog output	No analog output				-			Α	Α					
signals for Ch1	RH (0 100%RH)			de de			I	В	В					
and Ch2	· · /		4:)						С					
	Temperature (choose range-							C	-					
	Td (-40100°C))212°		_			H	H					
	a (0500g/m3)		218.5g		_			J	J					
	Tw (0100°C)	· ·	2+212					K	К					
NOTE:	x (0500g/kg d.a)	· · · ·	3500g	r/lb)				L	L					
	both channels with LonWorks fie													
- Td, a, Tw and	d x are only available with transm			Ch1										
- If only one an	alog output has been chosen, ch	oose A fe	or Ch2	Ch2										
- If only one an Analog output range for temperature	-40+60°C	(-40)+14(J°F)						Α				
range for	-20+60°C	(-4	.+140°	°F)						в				
temperature	0+60°C	(+32	2+14	0°F)						с				_
	-20+80°C	(-4	.+176°	°F)						D				
	-20+120°C		.+248°							E				_
	-40+80°C	· ·)+176							F				
	-40+120°C)+248							G				_
	0+100°C	· · ·	2+21		_					н				
	-20+180°C	· · · ·	+356°							J				
	-40+180 °C				_					ĸ				
)+356		_					_				
	0+180 °C	(+32	2+35	5°F)						L				
	Other (specify)									x	_			
Output units	metric										1			
	non-metric										2			
Cable bushings	cable gland Pg11										Α			
	conduit fitting NPT1/2"			(for	wire c	onduits	5)				В			
Ex certification an	CENELEC 76/117/EEC (VTT)											1		
Operating manua	no manual												Α	
	english												в	
												тот	AL	
	RH = Relative Humidity		+	a =	Abso	ute Hun	nidity g/	/m 3			—	-	ΩTY	
	T = temperature			_		g Ratio				Т		_		
	Td = Dewpoint Temperature		_			•	mperatu	ire						
		\vdash		1 00 -										
Soctions in it-li-	are available at extra cost.	- +	_	++	_						+	+		_
				+						_				
Sections in bol	d text are included in the pure	cnase pr	'ice.	+										
		1		- E -		I I I	1 I I		- I.				(I	
				+						_				
	r code with typical settings:													

BACK to Catalog Table of Contents

BACK to Price List Table of Contents

HMT 360 Series Intrinsically Safe Humidity and Temperature Transmitters Probes

Hur	nidity and Temperature Pr	robe														НМ	IP 3	36				A	Ι			PRIC	E
	Probe type	-	IP 3	61				for	r w a	all n	nou	ntin	g					•			1					\$5	95
		НМ	1P 3	63				sm	nall p	prol	be		-					:	3							\$7	95
		нм	1P 3	64				for	r hig	gh p	res	sur	es					4	L I							\$1,6	25
		нм	IP 3	65				for	r hig	gh te	emp	bera	ature	es				Ę	5							\$1,2	30
		НМ	1P 3	68				for	r pip	oelir	ne ir	nsta	allati	ions	5			8	3							\$1,4	00
	Probe length and	HM	1P 30	61	only	<i>'</i> :	n	o cal	ole		1	1201	mm	pro	obe	e, ma	ax	+60°	С	Α							
	probe cable length	HM	1P 30	63	only	' :	21	n (6f	t)		e	60m	ım p	orol	be,	ma	x 1 :	20°C	;	В							
							5	m (1	16 ft	t)	ł	60m	nm p	orot	be, i	тах	(+1	20°	2	С						\$1	50
							1	0 m	(33	ft)	ł	60m	nm p	orot	be, i	тах	(+1	120°	2	D						\$3	05
		HM	1P 3	64	only	' :	21	n (6f	t)		1	150	mm	pro	obe	, m	ax	180°	С	E							
							5	m (1	16 ft	t)		150	тm	n pro	obe,	, ma	ax +	-180	°C	F						\$1	50
							1	0 m	(33	ft)	:	150	m p	rob	e, r	nax	+1	80°C	:	G						\$3	50
		HM	1P 3	65	only	:	21	n (6f	t)		1	150	mm	pro	obe	, m	ax	180°	С	н							
					Т	Τ	5	m (1	16 ft	t)	:	150	тm	n pro	obe,	, ma	ax +	-180	°C	J						\$1	50
							1	0 m	(33	ft)	:	150	тm	pro	obe,	, ma	ax +	-180	°C	K						\$3	50
		HM	1P 30	68	only	r:	21	m (6f	t)		1	1781	mm	pro	obe	, m	ax	180°	С	L							
								m (1	-	t)	_			•				-180	_	M						\$1	50
							1	0 m	(33	ft)		178	тm	pro	obe,	, ma	ax 4	-180	°C	N						\$3	50
be							2	m (6f	t)		4	400	тm	pro	obe,	, ma	ax 1	180°	2	P			1			\$	75
Probe							5	m (1	16 fi	t)	4	400i	тm	pro	obe,	, ma	ax +	-180	Ĉ	Q						\$2	25
							1	0 m ((33	ft)	4	400	mm	pro	obe,	, ma	ax +	-180	°C	R						\$4	25
	Humidity sensor type	ger	nera	al p	urp	ose	*														1						
		spe	ecia	l se	ense	or fo	or h	igh s	solv	ven	t co	onc	ent	trat	ion	s	Т		Т		2						
								ydro													3						
	Sensor protection in probe		1P 36						-							ess	st	eel r	nett	ing*			1			\$	30
								PP	PS p	olas	tic	gri	d										2			\$	25
								PP	'S p	olas	tic	gri	d w	/ith	РТ	FE	me	mbr	ane	filter			5			\$	25
		HM	IP 36	64,3	365,	368	only	/: PP	'S p	olas	tic	gri	id/s	tai	nle	ss	ste	eln	ett	ing*			1			\$	30
								PP	'S p	olas	tic	gri	d										2			\$	25
								sir	nter	red	sta	inle	ess	ste	eel f	filte	er*						3			\$	50
					Т	Τ		PP	'S p	olas	tic	gri	d w	/ith	РТ	FE	me	mbr	ane	filter			5			\$	25
s		HM	1P36	8 m	noist	ure/	oil:	sir	nter	red	sta	inle	ess	ste	eel f	filte	er						3			\$	50
`								sta	ainl	less	s st	eel	gri	d fi	ilter	• *							4			\$	50
	Installation kit							no) kit	t														A			
		HM	1P 3	63	only	' :		du	ict in	nsta	llati	ion I	kit											В		\$	45
t		HM	1P 36	65 c	only	:		ma	ount	ting	fla	nge	e, st	tain	less	s ste	eel							D		\$	60
		HM	1P 36	58 c	only	:		ba	ll ve	alve	e se	t for	r ins	stalla	atior	n int	to p	ipeli	ne					E		\$	65
s	Ex certification and issuer	CE	NEL	_EC	76	/117	/EE	C (V	TT))															1		
		*rec	com	me	nde	d ch	oice	e																ТС	TAL		
																									QTY		
																						то	TAL	. VA	LUE		
a	Selections in bold text ar	re su	ppli	ied	fre	e of	cha	arge.																			
	Selections in italic are availa	able a	it ex	tra	cos	t.																					
				- 441	- ac.				1			-					T										
	Example of order code with	typic	al se	ettir	iys.												_								_		
	Example of order code with HMP 36					-	A	1	t	+			_			-			1								
						_	A	1																			
						_		1																			

HMT 361 Intrinsically Safe Transmitter Model for Wall Mount

Hur	midity and Temperature T	ansmitter HMT 361	PRIC
	Transmitter type	RH+T A A	\$2,0
		RH+T+Td+a+Tw+x	\$2,5
	Display on cover	no 1	
		yes 2	\$1
	Signal output	1 analog output channel (Ch1) 4 20 mA 1	
		2 analog output channels (Ch1 + Ch2) 4 20 mA 2	\$2
		LonWorks field bus (no analog outputs) TP78 3	\$2
	Analog output signals	No analog output	
	for Ch1 and Ch2	RH (0 100%RH) B B	
		Temperature (choose range-next section) C C	
		Td (-4060°C) (-40 140°F) H H	
		a (0 160g/m3) (070gr/ft3) J J J	
nit			
ert	NOTE		
Transmitter unit	NOTE:	x (0160g/kg d.a) (01120gr/lb) L L pole with L on Works field hus action	
nsr		nels with LonWorks field bus option	
Tra		y available with transmitter type D Ch1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
	Analog output range	-40+60°C (-40+140°F) A	
	for temperature	-20+60°C (-4+140°F) B	
		0+60°C (+32+140°F) C	
		Other (specify) X	
	Output units	metric 1	
		non-metric 2	
	Cable bushings	cable gland Pg11 A	
		conduit fitting NPT1/2" (for wire conduits) B	
	Ex certification and issuer	CENELEC 76/117/EEC (VTT) 1	
	Operating manual language	no manual A	
		english B	
	Probe type	120mm probe, max +60°C	
	Humidity sensor type	general purpose* HUMICAP 180 1	
		special sensor for high solvent concentrations HUMICAP 180L 2	
Probe		special sensor for hydrogen environments HUMICAP 180J 3	
Pre	Sensor protection in probe	PPS plastic grid & stainless steel netting* 16720HM 1	\$
		PPS plastic grid 16526 2	\$
		PPS plastic grid with PTFE membrane filter 17230HM 5	\$
	Ex certification and issuer	CENELEC 76/117/EEC (VTT) 1	
		*recommended choice TOTAL	
		RH = Relative Humidity a = Absolute Humidity g/m 3 QTY	
		T = Temperature x = Mixing Ratio g/Kg TOTAL VALUE	
		Td = Dewpoint Temperature Tw = Wet Bulb Temperature	
	Selections in italic are availa	ble at extra cost.	
<u> </u>		e supplied free of charge.	
	Example of order code with	tvnical settings.	

-13-

HMT 363 Intrinsically Safe Transmitter Model with Small Probe

				tra	ansm	nitter u	nit				prol	be		PRICE
Hur	midity and Temperature	Transmitter	HMT 363								Α			
	Transmitter type	RH+T	А											\$2,220
		RH+T+Td+a+Tw+x	D											\$2,720
	Display on cover	no	1											
		yes	2											\$105
	Signal output	1 analog output (Ch												
		2 analog output (Ch1 +	+ Ch2) 4 20 mA	2										\$230
		LonWorks field bus (no	analog opt.) TP78	3										\$285
	Analog output signals	No analog output		A	A									
	for Ch1 and Ch2	RH (0 100%RH)		В										
		Temperature (choose	e range-next secti	1										
		Td (-40 100 °C)	(-40 212 °F)	H	_							_		
		a (0 500g/m3)	(0 218.5 gr/ft	1										
unit		Tw (0 100 °C)	(+32 +212 °F)											
er L	NOTE:	x (0 500 g/kg d.a)	(0 3500 gr/lb		. L									
itte		annels with LonWorks field			_									
Transmitter		available w/transmitter type	-						_					
ran	- If only one analog out		Ch2											
F	Analog output range		(-4+176°F)			D								
	for temperature		(-4+248°F)		_	E								
			(-40+176°F)		-	F								
			(-40+248°F)		_	G								
			(+32+212°F)		-	H								
		Other (specify)				X					-+			
	Output units	metric					1							
	Cable hushings	non-metric					2		_			_		
	Cable bushings	cable gland Pg11	(o)) (()				A		_			_		
	Ex certification and issuer	conduit fitting NPT1/		ondun	:s)		В							
	Operating manual langua	•=						1						
	Operating manual langua							AB			_	_		
_	Duck a sable law eth	english	60		0000			<u> </u>						
	Probe cable length	2 m (6 ft)	60mm probe,						B					¢450
		5 m (16 ft)	60mm probe,			_		_	C					\$150
		10 m (33 ft)	60mm probe,		20°C				D					\$305
	Humidity sensor type	general purpose (rec	commended choic	e)		HUN	IICAP	180		1				
		special sensor for high	gh solvent conce	tratior	IS	HUN	IICAP	180L		2				
Probe		special sensor for hy	/drogen environm	ents		HUN	IICAP	180J		3				
Pro	Sensor protection in prob	PPS plastic grid & sta	ainless steel netti	ng (rec	omn	nende	d choi	ce) 16	5720H	IM		1		\$30
		PPS plastic grid						_	526			2		\$25
		PPS plastic grid with	PTFE membrane	ilter	-	+			/320 /230F	IM	\dashv	5		\$25
	Installation kit	no kit			_			117	2301	. 191		<u> </u>	A	+=0
		duct installation kit											B	\$45
	Excertification 11												<u> </u>	φ 4 5
	Ex certification and issuer	CENELEC 76/117/EEC	- (VII)						_		1	_	1	
													FOTAL	
		RH = Relative Humidity				-	3						QTY	
		T = Temperature	x = Mixin	-							тот	AL ۱	/ALUE	
		Td = Dewpoint Temper	rature Tw = Wet	Bulb Te	mpe	rature								
		vailable at extra cost			+	+			-					
	Selections in italic are a	TUTUDIO UL UNITO UUDI.			-	++					\rightarrow			
	Selections in italic are a	no included in numerica							_					
		are included in purchase	e price.			1 1								
	Sections in bold text a				_									
	Sections in bold text a Example of order code w	/ ith typical settings:												
	Sections in bold text a Example of order code w			1 A	1	Α	1							
	Sections in bold text a Example of order code w	/ ith typical settings:		1 A	1	Α	1							
	Sections in bold text a Example of order code w	/ ith typical settings:		1 A	1	Α	1							
	Sections in bold text a Example of order code w	/ ith typical settings:		1 A	1	Α	1							

HMT 364 Intrinsically Safe Transmitter Model with Probe for High Pressures

IHur	midity and Temperature Tran	mitter HMT 364	Α	Α	
	Transmitter type	RH+T A A			\$3,040
		RH+T+Td+a+Tw+x			\$3,54
	Display on cover	no 1			Ī
		yes 2			\$10
	Signal output	1 analog output channel (Ch1) 4 20 mA 1			
		2 analog output channels (Ch1 + Ch2) 4 20 mA 2		++	\$23
		LonWorks field bus (no analog outputs, TP78 3		_	\$28
	Analog output signals		_	++	ψ20
	for Ch1 and Ch2	No analog output			_
	for Chi and Ch2	RH (0 100%RH) B B		++	
		Temperature (choose range in next section) C C	_		
		Td (-40 100 °C (-40 212 °F) H H			
		a (0 500g/m3) (0 218.5 gr/ft3) J J			
		Tw (0 100 °C) (+32 +212 °F) K K			
	NOTE:	x (0 500 g/kg c (0 3500 gr/lb)			
unit	- Choose A for both channe	s with LonWorks field bus			
ar u	- Td, a, Tw and x are only a	ailable with transmitter type D Ch1			
litte	- If only one analog output h	is been chosen, choose A for Ch2 Ch2	-		
Transmitter	Analog output range	-20+80°C (-4+176°F) D			
ran	for temperature	-20+120°C (-4+248°F) E	-	++	-
- I		-40+80°C (-40+176°F) F			_
				+	
		-40+120°C (-40+248°F) G G		++	
		0+100°C (+32+ 212°F) H			_
		-20+180°C (-4+356°F) J		++	
		-40+180 °C (-40+356°F) K			
		0+180 °C (+32+356°F) L			
		Other (specify) X			
	Output units	metric 1			
		non-metric 2			
	Cable bushings	cable gland Pg11 A			
to		conduit fitting NPT1/2" (for wire conduits) B			
g	Ex certification and issuer	CENELEC 76/117/EEC (VTT) 1	_	++	
9 of	Operating manual language				
nts			_	++	
		english B		++	
	Probe cable length	2 m (6 ft) 150mm probe, max +180°C E			• • • =
		5 m (16 ft) 150mm probe, max +180°C F			\$15
to		10 m (33 ft) 150mm probe, max +180°C G			\$35
	Humidity sensor type	general purpose (recommended choice) HUMICAP 180 1		++	
		special sensor for high solvent concentrations HUMICAP 180L 2			_
of	Sensor protection in probe	special sensor for hydrogen environments HUMICAP 180J 3			\$3
nts	Sensor protection in probe	PPS plastic grid & stainless steel netting 16720HM PPS plastic grid 16526	1	2	\$3
		sintered stainless steel filter (recommended choice) 16452		3	\$50
to		PPS plastic grid with PTFE membrane filter 17230HM		5	\$2
	Ex certification and issuer	CENELEC 76/117/EEC (VTT)		1	·
				TOTAL	
		RH = Relative Humidity a = Absolute Humidity g/m 3		QT	
			TAL		=
		Td = Dewpoint Temperature Tw = Wet Bulb Temperature			
	Selections in italic are available	at extra cost.			
	Selections in bold text are s	Ipplied free of charge.			
	Example of order code with typ				
	HMT 30	4 A 1 2 B C D 1 A 1 B E 1 A 3 A 1			
					1

HMT 365 Intrinsically Safe Humidity and Temperature Transmitter Model with Probe for High Temperatures

		transmitte					prob		_	PRIC
um	nidity and Temperature Tra	smitter HMT 365					A			
	Transmitter type	H+T A								\$2,6
		H+T+Td+a+Tw+x D								\$3,1
Ľ	Display on cover	o 1								
				_						\$
ŀ	0			_				_		ψ
	Signal output	analog opt. channel (Ch1) 4 20 mA 1						_		
		analog opt. Channels (Ch1 + Ch2) 4 20 mA 2								\$2
		onWorks field bus (no analog outputs, TP78 3								\$2
Ē	Analog output signals	o analog output A A								
	for Ch1 and Ch2	H (0 100%RH) B B								
		emperature (choose range-next section) C C								
				_						
		d (-40100°C) <i>(-40212°F)</i> H H	_							
		(0500g/m3) (0218.5gr/ft3) J J						_		
		w (0100°C) (+32+212°F) K K								
	NOTE:	(0500g/kg d. (03500gr/lb) L L								
Ë	- Choose A for both chanr									
5	- Td a Tw and x are only	ailable with transmitter type D Ch1								
I ransmitter unit	- If only one analog output		_	_						
Ē	, ,									
Ë	Analog output range	20+80°C <i>(-4+176°F)</i> D								
Ĕ	for temperature	20+120°C (-4+248°F) E								
		l0+80°C <i>(-40+176°F)</i> F								
		l0+120°C (-40+248°F) G								
		+100°C (+32+ 212°F) H	_							
			_							
		20+180°C (-4+356°F) J	_							
		40+180 °C <i>(-40+356°F)</i> К	_							
		+180 °C <i>(+32+356°F)</i> L								
		ther (specify) X								
	Output units	etric	1							
		on-metric	2							
ľ	Cable bushings	able gland Pg11	_	A					-	
				в						
ŀ		onduit fitting NPT1/2" (for wire conduits)								
- H	Ex certification and issuer	ENELEC 76/117/EEC (VTT)	1 1	1						
	Operating manual language	o manual		A				_		
		nglish		В						
	Probe cable length	m (6 ft) 150mm probe, max +180 °C			н					
		m (16 ft) 150mm probe, max +180 °C			J					\$
		0 m (33 ft) 150mm probe, max +180 °C			K					\$
÷					Λ	۱ <u>.</u>				ψ
	Humidity sensor type	eneral purpose (recommended choice) H	UMIC	AP 180		1				
		pecial sensor for high solvent concentrations	UMIC	AP 180L		2				
บ		pecial sensor for hydrogen environments H	UMIC	AP 180J		3				
Frobe	Sensor protection in probe	PS plastic grid & stainless steel netting	1	6720HM			1	1		S
Ē		PS plastic grid	1	6526			2	2		ę
		intered stainless steel filter (recommended choice)		6452			3			5
ŀ	1 4 11 42 1 14	PS plastic grid with PTFE membrane filter	1	7230HM			5	_	l t	
	Installation kit	o kit						A		
		ounting flange, stainless steel						D		
	Ex certification and issuer	ENELEC 76/117/EEC (VTT)							1	
		H = Relative Humidity a = Absolute Humidity	g/ m 3					то	TAL	
-		= Temperature x = Mixing Ratio g/ Kg					-	(ΩТΥ	
-		d = Dewpoint Temperature Tw = Wet Bulb Temperature				т	DTAL			
-		· · · · · · · · · · · · · · · · · · ·			-				-96	
-	Selections in italic are availab		+				+	+	\vdash	
	Selections in bold text are	upplied free of charge.								
	Example of order code with t	ical settings:								
_										
_	HMT 365	1 2 B C D 1 A 1 B H 1 A 3 A 1								
_	НМТ 365	1 2 B C D 1 A 1 B H 1 A 3 A 1					-	-	+	
_	HMT 365	1 2 B C D 1 A 1 B H 1 A 3 A 1					+	_		
_	HMT 365	1 2 B C D 1 A 1 B H 1 A 3 A 1								

PRICE transmitter unit probe **HMT 368** Humidity and Temperature Transmitter Α Transmitter type RH+T \$2,825 Α RH+T+Td+a+Tw+x D \$3,325 Display on cover no 2 \$105 yes 1 analog output (Ch1) Signal output 4... 20 mA 1 2 analog output (Ch1 + Ch2) 4... 20 mA 2 \$230 LonWorks field bus (no analog opts TP78 3 \$285 Analog output signals No analog output Α А в for Ch1 and Ch2 RH (0... 100%RH) в С Temperature (choose range-next section) С н н Td (-40...100°C) (-40...212°F) a (0...500g/m3) (0...218.5gr/ft3) J J κ Tw (0...100°C) (+32...+212°F) κ NOTE: x (0...500g/kg d.a) L L (0...3500gr/lb) unit Choose A for both channels with LonWorks field bus - Td, a, Tw and x are only available with transmitter type D Ch1 Transmitter - If only one analog output has been chosen, choose A for Ch2 Analog output range -20...+80°C (-4...+176°F) D for temperature -20...+120°C (-4...+248°F) Е -40...+80°C (-40...+176°F) F -40...+120°C G (-40...+248°F) 0...+100°C н (+32...+ 212°F) -20...+180°C J (-4...+356°F) -40...+180 °C (-40...+356°F) Κ 0...+180 °C (+32...+356°F) L Other (specify) Х Output units metric 1 non-metric 2 Cable bushings cable gland Pg11 Α в conduit fitting NPT1/2" (for wire conduits) Ex certification and issuer CENELEC 76/117/EEC (VTT) 1 Operating manual language no manual Α В english Probe type and cable length 2 m (6 ft) 178mm probe, max +180 °C \$150 5 m (16 ft) 178mm probe, max +180 °C М 10 m (33 ft) 178mm probe, max +180 °C Ν \$350 2 m (6 ft) 400mm probe, max +180 ℃ Р \$75 5 m (16 ft) 400mm probe, max +180 °C Q \$225 10 m (33 ft) 400mm probe, max +180 °C R \$425 general purpose* Humidity sensor type HUMICAP 180 1 Probe special sensor for high solvent concentrations HUMICAP 180L 2 3 special sensor for hydrogen environments **HUMICAP 180J** Sensor protection in probe PPS plastic grid & stainless steel netting \$30 16720HM 1 **PPS** plastic grid 16526 2 \$25 sintered stainless steel filter* 3 \$50 16452 PPS plastic grid with PTFE membrane filter 5 \$25 17230HM Installation kit no kit Α Ε \$65 ball valve set for installation into pipeline Ex certification and issuer CENELEC 76/117/EEC (VTT) *recommended choice TOTAL RH = Relative Humidity a = Absolute Humidity g/m 3 QTY TOTAL VALUE T = Temperature x = Mixing Ratio g/ Kg Td = Dewpoint Temperature Tw = Wet Bulb Temperature Selections in italic are available at extra cost. Selections in bold text are supplied free of charge. Example of order code with typical settings: HMT 368 A 1 2 B C D 1 A 1 B L 1 A 3 A 1

BACK to

Catalog

Table of

Contents

BACK to

Price List

Table of

Contents

BACK to

Sheet

Tech Data

HMT 368 Intrinsically Safe Humidity and Temperature Transmitter Model with Probe for Pipeline Installations

240's Series

HMP 243 with Dewpoint Sensor Head

				н	MP	243	G			1							Α					PRICE
Transmitter type	Td +	х																				\$2,485
Transmitter cover	no d	ispla	iy					1														
	local	displa	ay and	dkey	ypad			2														\$295
Dewpoint sensor	2 m	cabl	e						A													
head cable length	5 m c	able							В													\$185
	10 m	cable	e						С													\$400
Temperature	no te	empe	eratu	re s	ens	or he	ead			1												
sensor head cable											-											
length		-																				
Serial bus module	RS 2	232C	;	_			<u> </u>	<u> </u>	<u> </u>	<u> </u>	A											
	RS 4			,							В											\$140
	digita										C											\$140
Sensor protection	-				ol cin	torod	filtor	<u> </u>			0	1										\$50
Sensor protection	1645								a)											<u> </u>		
	1672						seel I	iettin	y)			2								<u> </u>		\$30
	1723			emb	rane)						5	<u> </u>							<u> </u>	-	\$25
Analog output	42												Α	A						<u> </u>		
signals	02		4										В	В								
(Ch1 and Ch2)	01	V											С	С								
	05	<i>v</i>											D	D								
	01	0 V											E	Ε								
									chai	nnel 1	1											
									_			_										
									chai	nnel 2	2											
Parameters for the	Td	(-40.	+1	00 °	°C)		(-4	0	chai +212		2				3	3						
	-	(-40. (0 5				(0				°F)	2				3 6	3 6						
Parameters for the analog outputs (Ch1 and Ch2)	-					(0			⊦212 lb d.a	°F)					-							
	-					(0			⊧212 lb d.a chai	° F) a.)	1				-							
analog outputs	-					(0			⊧212 lb d.a chai	° F) a.) nnel <i>1</i>	1				-		A					
analog outputs (Ch1 and Ch2)	-					(0			⊧212 lb d.a chai	° F) a.) nnel <i>1</i>	1				-		A					
analog outputs (Ch1 and Ch2) Temperature range	-					(0			⊧212 lb d.a chai	° F) a.) nnel <i>1</i>	1				-							
analog outputs (Ch1 and Ch2) Temperature range (measurement)	x	(0 5				(0			⊧212 lb d.a chai	° F) a.) nnel <i>1</i>	1				-		A	1				
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display	x metr	(0 5	500 g/			(0			⊧212 lb d.a chai	° F) a.) nnel <i>1</i>	1				-		A	1				
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus)	x metri non-	(0 5	500 g/			(0			⊧212 lb d.a chai	° F) a.) nnel <i>1</i>	1				-		A	1 2				
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for	x metri non- no	(0 5	500 g/			(0)			⊧212 lb d.a chai	° F) a.) nnel <i>1</i>	1				-		A					\$EE
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting	x metri non- no yes	(0 5	500 g/	kg c		(0)			⊧212 lb d.a chai	° F) a.) nnel <i>1</i>	1				-		A		A			\$55
analog outputs (Ch1 and Ch2) Temperature range	x metri non- no yes No p	ic metro oowe	500 g/	rd	J.a.)		350	D0 gr/	►212 lb d.a chai chai	° F) a.) nnel <i>1</i>	1				-		A			3		
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting Power cord	x metri non- no yes No p 6 Ft.	(0 5 ic .metr. . A/ C	500 g/	rd ver	corc	<u> </u>	N 85	-206	+212 lb d.a chai chai	nnel 2	1				-		A			3		\$55
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting	x metri non- no yes No p 6 Ft. NP1	(0 5 ric metr 00 we . A/C T 1/2	ric ric Pr con C pow 2 Con	rd ver a	corc	<u> </u>	N 85	-206	+212 lb d.a chai chai	nnel 2	1				-		A			-		
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting Power cord	x metri non- no yes No p 6 Ft.	(0 5 ric metr 00 we . A/C T 1/2	ric ric Pr con C pow 2 Con	rd ver a	corc	<u> </u>	N 85	-206	+212 lb d.a chai chai	nnel 2	1				-		A			2	В	
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting Power cord	metri non- no yes No p 6 Ft. NPT PG 9	(0 5 ic metr oowe , A/ C T 1/ 2 9 Cab	ric ric C pov 2 Col ble G	rd ver d ndui	corc it Fit	l P/I tting	N 85	-206	+212 lb d.a chai chai	nnel 2	1				-		A			2 TC	B DTAL	
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting Power cord	x metri non- no yes No p 6 Ft. NPT PG 9	(0 5 ic metr. 000we A/C T 1/2 9 Call = Dew	cic ric ric con con con con con con con co	rd rd ndui ilan	corc it Fit d	l P/I tting	N 85	-206	+212 lb d.a chai chai	nnel 2	1				-		A	2	B	2 TC	B DTAL QTY	
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting Power cord	metri non- no yes No p 6 Ft. NPT PG 9	(0 5 ic metr. 000we A/C T 1/2 9 Call = Dew	cic ric ric con con con con con con con co	rd rd ndui ilan	corc it Fit d	l P/I tting	N 85	-206	+212 lb d.a chai chai	nnel 2	1				-			2	B	2 TC	B DTAL	
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting Power cord	x metri non- no yes No p 6 Ft. NPT PG 9	(0 5 ic metr. 000we A/C T 1/2 9 Call = Dew	cic ric ric con con con con con con con co	rd rd ndui ilan	corc it Fit d	l P/I tting	N 85	-206	+212 lb d.a chai chai	nnel 2	1				-			2	B	2 TC	B DTAL QTY	
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting Power cord	x metr. non- no yes No p 6 Ft. NPT PG S Td = x = 1	(0 5 	cic cic cic cic cic cic cic cic cic cic	rd ver d it Ter io g/	corc it Fit d Kg	ature	N 85	-206	+212 lb d.a chai chai 71 2067	* °F) a.) nnel ^ nnel 2	1				-			2	B	2 TC	B DTAL QTY	
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting Power cord Cable Connections	x metr. non- no yes No p 6 Ft. NPT PG S Td = x = 1	(0 5 	cic cic cic cic cic cic cic cic cic cic	rd ver d it Ter io g/	corc it Fit d Kg	ature	N 85	-206	+212 lb d.a chai chai 71 2067	* °F) a.) nnel ^ nnel 2	1				-			2	B	2 TC	B DTAL QTY	
analog outputs (Ch1 and Ch2) Temperature range (measurement) Units (local display and serial bus) Installation kit for duct mounting Power cord Cable Connections	x metri non- no yes No p 6 Ft. NPT PG 9 Td = x = 1	(0 5 <i>ic</i> <i>metr.</i> <i>A/C</i> <i>T 1/2</i> <i>9 Cal</i> <i>9 Cal</i> <i>9 Cal</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i> <i>1/2</i>	fic fic fr con fr c	rd ver ndui ilan i Ter io g/ e pri	corc it Fit d Kg	ature	N 85	-206	+212 lb d.a chai chai 71 2067	* °F) a.) nnel ^ nnel 2	1				-			2	B	2 TC	B DTAL QTY	

BACK to

BACK to Price List Table of Contents

HMP 243 with Dewpoint and Temperature Sensor Heads

			H	/P 2	243					D				L		L		L	L						PRICE
Transmitter type	RH	Ι+T	+Td	⊦a+T	w+x	+dT																			\$2,915
Transmitter cover	no) di	spla	y							1														
	loc	al c	displa	iy an	d ke	ура	d				2														\$295
Dewpoint sensor	2 1	тc	abl	e								Α			1		1		1		1				
head cable length	5 n	nca	able									В													\$185
	10	mo	cable	;								С													\$400
Temperature	21	m c	abl	è									2												
sensor head cable	5 n	nca	able										3												\$55
length	10	mo	cable	•									4												\$120
Serial bus module	RS	S 2	32C											A											
	RS	5 48	85/ R	S 42	2									В											\$140
			curre						_					С											\$140
Sensor protection		·	2 (sta		<u> </u>	el si	nter	ed fil	ter)						1										\$50
) (PF							ettin	a)				2										\$30
) (P1								97			-	5	_									\$25
Analog output			0 m/			Jian	0)				_				5	A	A								ψΖΟ
signals			0 m/	-												A B	A B				-				
(Ch1 and Ch2)		20 1	-	•	$\left - \right $										-	В С	В С		-		-				
				-										-	-										
		5													-	D	D				-				
	0		o v	-							_				-	Ε	E								
		-	_										nne				_								
												cha	nne	912				<u> </u>							
Parameters for the)1			•												1	1						
analog outputs			ang			elo												_	2						
(Ch1 and Ch2)			40+					0+2										3	3						
		_	60					. 262	-									4	4						
		· ·	10					2										5	5						
			50	-	-	a.)	(0.	. 350)0 g	r/lb	d.a.)						6	6						
	dT	(-1	10+	-50 °	C)		(-1	8 +	·90 '	°F)								7	7						
												cha	nne	el 1											
												cha	nne	el 2											
Temperature	-40	0	+60	°C			-40)	+14	0 °I	F									Α					
range	-40	o	+12	0 °()		-40)	+24	8°	F									В					
(measurement)	-40	o	+18	0 ° (2		-40)	+35	6°	F									С					
	0	+:	120	°C			+3.	2	+24	18 °	° F									D					
	0	+:	180	°C			+3.	2	+35	56 °	° F									Ε					
	0	+1	100	°C				2												F					
	Ot	he	r (S	pec	ify))														x					
Units (local display		etri	-		. /																1				
and serial bus)			- netr	ic																	2				
Installation kit for	no			-				<u> </u>									-					A			
duct mounting			kits	(for h	ooth	sen	sor h	nead	s)													C			\$105
Power Cord			owe						-1						-	-	-		-				3		<i></i>
			A/ C			CO	d F	₽/ N	85-	206	671												2		\$10
Cable Connections			1/2									18				-	-						-	Α	ψις
			Cal					<i>י</i> י צ		20-2				1				1	1			1		B	
	, 6				Jian																		то	_	
	DL	4 1	Rela	tivo	Hum	idit (-		2	_ ^		Ito I	- -lum	idity/	g/ m	3	-		_		
						uity													-	13	TO	TAL			
	T hT		Tem					-							-		tio g	-	_		10	I AL	VAL		
			Dev								<u>.</u>				vett	Juid	ier	nper	atur	e					
The black of the state			Proc									mpe	ratu	ire	-	-	-		-						
The highlighted sections	are inclue	ded	ın th	ne pr	ices	ot th	ne b	asic	vers	sions	S.			_	_	_	_	_	_						
Example of order code w		_																							
	243 D	_			A	1	А	A	1	2	A	1	А	3	В		-		-		-		-		

BACK to Price List Table of Contents

DMP 246 for Extremely High Temperatures

BACk to Catalog Table of Contents

BACK to Price List Table of Contents

				-	DMP	246													PRICE
Fransmitter cover	no	displa	iy				Α												\$3,995
	loca	l displa	ay and	d keyp	bad		В												\$295
Cable length	2 m	cabl	e					1											
	5 m	cable						2											\$150
	10 n	n cable	Э					3											\$375
Alarmoutputs	no								A										
	yes '	*)							В										\$165
Power supply	24	VAC/	VDC							0									
module	115	VAC *)							1									\$190
	230	VAC *)							2									\$190
Serial bus module	RS	232C	;								Α								
	RS 4	485/ R	S 422	2							В								\$140
	digita	al curr	ent lo	ор							С								\$140
Analog output	-	20 m/										1	1						
signals		0 mA										2	2						
(Ch1 and Ch2)	01											3	3						
- /	05											4	4						
	01			<u> </u>								5	5						
									chan	nel 1		-	-						
				<u> </u>						nel 2									
Parameters for the	Td	(+40	+10	(0°C)		(+10	4+2	212ºF						A	А				
analog outputs	Td		-100 °				4+2)					В	В				
(Ch1 and Ch2)	x		100 g/				+2 2800g		2)					E	E				
	^ X		800 g/				2800g 5600g							F	F				
	x		2000 g/											G	G				
	^	(0Z		, vy)		(0	14000	JGI/ID(d.a.) chan	nel 1					5				
	-									inel 2					ļ				
Units (local display	metr	ic							unar							1			
and serial bus)		nc -metric														1			
,	-															2			
Power Cord		Power				0E 00	674										3		¢40
Coble Connector		A/CF						0	-							-	2	•	\$10
Cable Connectors	-	T 1/2			ing P/	11 45	-2061	0										A	
	PG	9 Cab	ie Gla	ind														B	
									<u> </u>								Ĩ		
* NOTE! Simultaneous in								230 V	/AC							TO-		QTY	
powersupply module in	same	e trans	smitte	r is no	ot pos	sible.										TOL	AL VA	ALUE	
	T :	_		<u> </u>															
		= Dev				ure													
	X =	Mixing	g Rati	io g/ K	g														
The highlighted sections	are in	clude	d in th	ne prio	ces of	f the l	oasic	versi	ons.										
			<u> </u>																
Example of order code w	ith typ	ical se	ettings	3:															
DMP 246	A		А	0	Α			Α	E	1		В							

DMP 248 for Low Temperatures

Trenewitten		diant				248		<u> </u>	-	-		1	-	<u> </u>						PRICE
Transmitter cover		displ	-	o d I			A	<u> </u>									<u> </u>	<u> </u>		\$2,430
Cable las of	-	l disp		nd ke	ypad	I	В													\$295
Cable length		cab						1												* /
		cable						2												\$150
	_	n cab	le					3	1											\$340
Alarm outputs	no	±)							A											.
	yes	·							В	1										\$165
Power supply		VAC		C						0										
module		VAC				_				1								_		\$190
<u> </u>	_	VAC								2	1									\$190
Serial bus module		232									A									.
		485/F									B									\$140
:		al cui		· ·	<u> </u>	<u> </u>	<u> </u>				С									\$140
Sensor protection						ainles						1								\$45
• • • •				s stee	el filte	er for v	vacu	um				6	1							\$45
Analog output	_	20 m											A	A			<u> </u>	<u> </u>		
signals		20 mA	-	<u> </u>					<u> </u>	<u> </u>			B	B				1		
(Ch1 and Ch2)	01					-							C	C						
	05												D	D						
	01	0 V											E	E						
	<u> </u>	-				-			-		nnel 1							1		
										cha	nnel 2	2								
Units (local display	metr														1	<u> </u>				
and serial bus)	_	-metri													2					
Parameters for the	Τd			+20				+68								A	A	 		
analog outputs	Τd			+60					40°F)							В	В	<u> </u>		
(Ch1 and Ch2)	Τd			+20	°C)		(-76	+6	8°F)							С	С			
	ppm			100)												F	F			
	ppm			1000)		-					-					G	G	1		
	ppm			5000)												Н	Н	-		
	Т			+60 °												L	L	L		
	Т			+80					40°F							М	М			
	RH		(0	100%	RH)		(-40	+1	76°F)							R	R			
	<u> </u>											nnel '								
											char	nnel 2	2							
Power cord	_	pow																3		
						N 85-												2		\$10
Cable Connectors	_				tting	P/ N 4	45-20	618											A	
	PG	9 Cab	le Gl	and															В	
																			DTAL	
*) NOTE! Simultaneous in								15/2	30 V/	٩C								_	QTY	
power supply module in	same	e tran	s mitt	er is	not p	ossib	le.				L					<u> </u>	тоти	AL VA	LUE	
	<u> </u>																			
	Td	= De	wpoi	nt Te	mper	ature					= Rel			idity						
	ppm	= Pa	rts pe	er Mill	ion					Т	= Ter	npera	ature							
The selections in bold itali	ic are	inclu	Ided	in the	price	es of	the b	asic v	/ersic	ns.										
Example of order code wit	th typ	ical s	etting	gs:																
	Α	1	А	0	А	1	А	А	1	А	L	3	В							
DMP 248	-		L	1																
				_			_	_								_				

HMK 15A Calibrator

				нмк	15A												PRICE
Tw o Standard Chamber	S																\$460
Additional Chambers																	
	0 to 4 (S	becify	Num	ber)													
	\$135.00 e	ach															\$
LiCl Salt, Premeasured v	v ith Certifica	ite, 15	gms	(18 m	1))												
	No LiCl						0										
	LiCl for o	ne ch	ambei	r			1										\$40
	LiCl for ty	voch	ambe	rs			2										\$80
MgCl2 Salt, Premeasure	d w ith Certif	icate,	30 gn	ms (13	3 ml)												
	no MgCl	2						0									
	MgCl2 fo		cham	ber				1									\$40
	MgCl2 fo	r tw o	cham	bers				2									\$80
NaCl Salt, Premeasured					ml)												
	no NaCl								0								
	NaCl for	one cl	hambe	er					1								\$40
	NaCl for	tw o c	hambo	ers					2								\$80
K2SO4 Salt, Premeasure	ed with Cert	ificate	, 30 g	jms (2	20 ml)	-											
	no K2SO	4								0							
	K2SO4 f	or one	chan	nber						1							\$40
	K2SO4 f	or tw c	o char	mbers						2							\$80
lon exchanged w ater	no water	·									Α						
	w ater for	three	chan	nbers							В						\$15
Carrying bag	no bag											0					
	carrying b	bag										1					\$130
Thermometer	with mer	cury											1				
	with red	capil	llary	liquid	d								2				
LiCl Salt, 500 gms	no salt													0			
	Bulk HM-L	.iCl												1			\$68
NaCl Salt, 500 gms	no salt														0		
	Bulk HM-N	laCl													1		\$30
K2SO4 Salt,	no salt															0	
500 gms	Bulk K2S	D4														1	\$50
															TC	TAL	
																QTY	
														TOT	AL VA	LUE	
The highlighted sections	are included	d in the	e price	es of th	ne ba	isic ve	ersion	s.									
Example of order code w	/ith typical se	ttinas															
-		-			D	0	4										
HMK 15	A 0 1	0	1	0	В	0	1	0	0	0							

BACK to Catalog Table of Contents

BACK to Price List Table of Contents

BACK to Tech Data

Sheet

PTB 220 Pressure Transmitter

		PTB 220	PRICE
	Accuracy class	class A A	\$1,600
		class B B B	\$1,400
	Transducer	Range 5001100 hPa:	
	configuration	1 x pressure transducer (P1) A	
		2 x pressure transducer (P1, P2) B	\$400
		3 x pressure transducer (P1, P2, P3) C	\$800
	Output options	RS 232C / TTL serial / pulse A	
BACK to		RS 232C / RS 485 / RS 422 B	\$150
Catalog		RS 232C / 0 5 VDC / 0 20 mA C	\$300
Table of	Transmitter cover	no display 1	
Contents		LCD display with backlight 2	\$400
	Pressure fitting	barbed fitting 1/8" A	
		barbed fitting 1/8" / 2 ports *) B	
BACK to	Pressure connector/	connector 1: P1	1
Price List	transducer coupling	connector 1: P1 and P2	2
Table of Contents		connector 1: P1 and P2 and P3	3
contents		connector 1: P1 - connector 2: P2	4
		Т	OTAL
BACK to	*) The two pressure port optio		QTY
Tech Data	barometer with two pressure t	ransducers. TOTAL V	ALUE
Sheet			
	Example of order code with ty		
	PTB 220	A A A 1 A 1	

PTU 200 Pressure, Temperature, Humidity Transmitter

													DTU								
													PTU 2	:00						PRICE	
	Pressure	500.	1100	0 hPa	abs.	class	A								А					\$1,600	
		500.	1100	0 hPa	abs.	class	В								в					\$1,400	
		500.	1100) hPa	abs.	class	A (2 t	ranso	lucers	;)					С					\$2,000	
		500.	1100) hPa	abs.	class	B (2 t	ransd	lucers	5)					D					\$1,800	
	Temperature and	HMF	945A	-P (T+	+U), 2	20m c	able v	vith co	onnec	tor						А				\$800	
BACK to	humidity	HMF	945D	(T+U), 3.5	m cal	ble									В				\$800	
Catalog		PT 1	00 (T	only)	, 2.0r	n cab	le									С				\$800	
Table of	Output options	RS 2	232C	/TTL													Α				\square
Contents		RS 2	232C	/RS4	485 / I	RS 42	22										В			\$150	
	Transmitter cover	No d	lispla	ay														1			
BACK to		LCD	displa	ay wit	h bac	klight												2		\$400	
Price List	Pressure fitting	Barb	oed fi	itting	for 1	/8" h	ose												Α		
Table of		Quic	k coni	nector	r with	shutc	off val	ve for	1/8" I	nose									В		
Contents																		т	DTAL		
																			QTY		
																	тот	AL VA	LUE		
BACK to																					+
Tech	Selections in bold are in	nclud	ed in	the	prices	s of t	he ba	asic v	/ersio	ns.						_					+
Data Sheet																					+
Sileet	Example of order code wi	th typi	cal se	ettings	:				-					\neg							+
	PTU 200	1	Α	A	1	A								\neg							+
														\rightarrow							+

HUMIDITY, DEWPOINT AND TEMPERATURE INSTRUMENTS Portables:

	HMI 38	Humidity data processor and field calibrator for measurement and calculation of relative	1,780.00
	HMP 35E	Humidity and temperature probe complete with: H Series HUMICAP RH sensor, Pt 100 temperature element; membrane filter, compatible with HMI 38 data processor. Temperature range -40 to +80 °C.	\$495.00
	HMP 36E	Humidity and temperature probe with: H-series HUMICAP RH sensor, Pt 100 temperature element; stainless steel filter; compatible with HMI 38 data processor. Temperature range -40 to +160 °C.	\$695.00
	HMP 37E	Humidity and temperature probe complete with: H-series HUMICAP RH sensor; Pt 100 temperature element; 5 meter probe/cable assembly; stainless steel filter; compatible with HMI 38 data processor. Temperature range -40 to +180 °C.	\$960.00
	18326 15902	HM Carry case for HMI 38 and accessories HM10 M extension cable for HMP 35E, 36E, and 37E	
	HMI 41	Humidity and temperature indicator and field calibrator complete with: two line LCD display of humidity, temperature, dewpoint, absolute humidity, wet bulb temperature, mixing ratio; selectable metric/non-metric display; field humidity calibrator function.	\$490.00
	HMP 41	Humidity and temperature probe complete with: HUMICAP® RH sensor; PT 1000 RTD; calibrated	\$325.00
	HMP 42	Humidity and temperature prove complete with: 4mm (0.16 in.) diameter; HUMICAP® RH sensor; PT 1000 RTD; 1500 mm (59.1 in.) spiral cable; calibrated	\$795.00
	HMP 45	Humidity and temperature probe complete with: 1500 mm (59.1 inch) spiral cable; HUMICAP® RH sensor; PT 1000 RTD; calibrated.	\$385.00
	HMP 46	Humidity and temperature probe complete with: 1500 mm (59.1 inch) spiral cable; HUMICAP® RH sensor; PT 1000 RTD; calibrated.	\$670.00
BACK to Catalog Table of	HM 34	Pocket-size relative humidity and temperature meter complete with: retractable probe; 3-1/2 digit LCD display; 9 V battery; automatic power off; H Series HUMICAP RH sensor and Pt 100 temperature element; carrying case; calibrated.	\$495.00
Contents	18100ZZ	Calibration cable for field calibration of HM 20/30/130's using the HMI 38	. \$95.00
	18200ZZ	Calibration cable for field calibration of digital transmitters using the HMI 38	\$75.00
BACK to Price List	18300ZZ	Calibration cable for field calibration of HM 60/70/140's using the HMI 38	. \$95.00
Table of Contents	19116ZZ	Calibration cable for field calibration of HM60/70 and HMP 140 series, using the HMI 41	\$30.00
	19164ZZ	Calibration cable for field calibration of HMP 230 and HMP 240 series, using the HMI 41	\$30.00
	19165ZZ	Calibration cable for field calibration of HM 20/30 and HMP 130 series, using the HMI 41	\$30.00
	19446ZZ	Serial interface cable for HMI 41	\$30.00
	HM 44	Concrete monitoring set complete with: HMI 41 indicator; HMP 44 probe; 26849 carry case; 19267 rubber plugs (12); 19266 plastic sleeves (12); 19268 protective cover (3).	\$850.00
	HMP 44	Probe for use in HM 44 concrete measurement.	\$265.00
	HMP 44L	HMP 44 probe with extended cable.	\$285.00
	26849	Carry case for HM 44 products.	\$185.00
	19266	Plastic sleeves (12) for use with HM 44.	\$15.00

19267	Rubber plugs (12) for use with HM 44\$15.00
19268	Protective covers (3) for use with HM 44\$15.00
Special Pricing	on Selected Combinations of Portable Indicators and Probes:
HMI 41 & HMP 41	Humidity and temperature indicator/field calibrator
HMI 41& HMP 42	Humidity, dewpoint and temperature indicator/field\$1245.00 plus humidity and temperature probe.
HMI 41 & HMP 45	Humidity and temperature indicator/field calibrator
HMI 41 & HMP 46	Humidity, dewpoint, and temperature indicator/field calibrator plus humidity and temperature
HMI 38 & HMP 35E	Data processor plus RH and T probe\$1,995.00
HMI 38 & HMP 36E	Data processor plus RH and T probe for wide temperature range
HMI 38 & HMP 37E	Data processor plus RH and T probe with 5 meter cable \$2,550.00

INDUSTRIAL TRANSMITTERS

:	140 Series 230 Series 240 Series	See Order Guides Pages 8,9,10 See Order Guides Pages 2,3,4,5,6,7 See Order Guides Pages 18,19,20,21
BACK to Catalog Table of Contents	HMP 260 EX:	Intrinsically-safe humidity transmitter for hazardous environments. Factory Mutual approved\$1,525.00 for use in Class I, Division I, Groups A through G. 24 VDC ±2 VDC input power; 4 to 20 mA output signal corresponding to 0 to 100% RH; -20°C to +60°C (-4°F to +140°F) temperature operation range; 216 microns sintered bronze filter; H-series HUMICAP RH sensor; supplied with Zener barriers, calibrated.

HVAC/EMS TRANSMITTERS Duct and Wall Mount:

BACK to Price List Table of		Humidity and temperature 2-wire transmitter for duct mounting complete with 4 to 20 mA
Contents	HMD 60U	Humidity transmitter for duct mounting; same as HMD 60Y but humidity only\$390.00
	HMW 60Y	Humidity and temperature 2-wire transmitter for wall mounting complete with 4 to 20 mA
	HMW 60U	Humidity transmitter for wall mounting; same as HMW 60Y but humidity only\$325.00
	HMD 70Y	Humidity and temperature 3-wire transmitter for duct mounting complete with selectable
	HMD 70U	Humidity transmitter for duct mounting; same as HMD 70Y, but humidity only\$390.00 -26-

	HMW 70Y	Humidity and temperature transmitter for wall mounting complete with selectable 0 to 1,
	HMW 70U	Humidity transmitter for wall mounting; same as HMW 70Y but humidity only
	HMW 21YB	Humidity and temperature 2-wire transmitter for space mounting complete with:
	HMW 21UB	Humidity transmitter for space mounting; same as HMW 21YB, but humidity only
	HMW 31YB	Humidity and temperature 3-wire transmitter for space mounting complete with jumper
	HMW 31UB	Humidity transmitter for space mounting: same as HMW 31YB, but humidity only
	Outdoor Use:	
	HMD 60YO	Humidity and temperature 2-wire transmitter for use outdoors complete with 4 to 20 mA
	HMD 70YO	Humidity and temperature 3-wire transmitter for use outdoors complete with user
BACK to Catalog	HMD 60UO	Humidity 2-wire transmitter for use outdoors; same as HMD 60YO but humidity only
Table of Contents	HMD 70UO	Humidity 3-wire transmitter for use outdoors
	Calibration-Fre	e:
BACK to Price List Table of	HMD 40Y	Two-wire humidity and temperature transmitter for duct mounting complete with: 4 to 20 mA
Contents	HMD 40U	Humidity transmitter for duct mounting: same as HMD 40Y, but humidity only
	HMW 40Y	Two-wire humidity and temperature transmitter for wall mounting complete with:
	HMW 40U	Humidity transmitter for wall mounting; same as HMW 40Y, but humidity only
	HMD 50Y	Three-wire humidity and temperature transmitter for duct mounting complete with:
	HMD 50U	Humidity transmitter for duct mounting; same as HMD 50Y, but humidity only

	HMW 50Y	Three-wire humidity and temperature transmitter for wall mounting complete with:
	HMW 50U	Humidity transmitter for wall mounting; same as HMW 50Y, but humidity only
	Temperature-O	nly:
	HMD 60T	Temperature two-wire transmitter for duct mounting complete with: 4 to 20mA output\$375.00 corresponding to -20°C to +80°C (-4°F to +176°F) temperature; 10 to 35 VDC input power; PT 1000 temperature element; membrane filter; calibrated.
	HMW 60T	Temperature two-wire transmitter for wall mounting complete with: 4 to 20 mA output cor\$325.00 responding to -5°C to +55°C (+23°F to +131°F) temperature; 10 to 35 VDC input power; PT 1000 temperature element; calibrated.
	HMD 70T	Temperature three-wire transmitter for duct mounting complete with: jumper-selectable 0 to
	HMW 70T	Temperature three-wire transmitter for wall mounting complete with: jumper-selectable 0 to
	OEM and CUST	OM HUMIDITY INSTRUMENTS
	HUMITTER 40	Integrated humidity transmitter incorporates INTERCAP interchangeable relative humidity
BACK to	HUMITTER 50Y	Integrated humidity and temperature transmitter incorporates INTERCAP interchangeable
Catalog	HUMITTER 50Y	X Same as HUMITTER 50Y, but passive resistance output from PT 1000 RTD for temperature\$195.00
Table of Contents	HUMITTER 50U	Same as HUMITTER 50Y, but relative humidity only. 0-5 V model available\$175.00
BACK to Price List Table of	HMM 30C	OEM humidity transmitter for environmental chambers complete with: 0 to 1 contact factory 0 to 5, 0 to 10 VDC or 0 to 20 mA output corresponding to 0 to 100% RH, 10 to 35 VDC or 9 to 24 VAC supply voltage, HUMICAP H-sensor, 1.6 m (5.2 ft.) of cable, 200 mm (7.8 in) sensing head; sintered filter; calibrated. Available with or without mounting flange.
Contents	HMM 22D	OEM humidity transmitter for environmental chambers complete with: 4 to 20 mA output contact factory corresponding to 0 to 100% RH; 10 to 35 VDC input power; HUMICAP H-sensor; single-point calibration; 60 cm cable; membrane filter; calibrated.

CALIBRATION INSTRUMENTS and ACCESSORIES

Calibration Devices:

HMK 13	Multi-probe calibrator conta	ct factory
HMK 15	Humidity probe calibrator See Order Guide F	Pages 22
HMK 41	Field calibrator complete with: HMI 41/HMP 46 indicator and probe; two calibration S cables; carry case; NIST certificate of calibration at ± 1 % accuracy.	\$1,150.00

Accessories:

	1558 HM	Single use sleeve for the measurement of humidity in concrete with HMP 36 probe, package of 25.	\$50.00
	11990 HM	Mounting flange for 12 mm diameter probes.	\$55.00
	0639	Carrying case for the HMI 31 digital meter and HMP 35 probe	\$49.50
	36736	Carrying case for HMI 41	
	HMPC 12	Extension cable (specify length) - Plugs and assembly work (specify Amphenol or Lemo connectors) - Additional cable/foot	
	HMR 19	Circular chart recorder 120/240V, 60/50 Hz.	\$1,575.00
	HMPM 21801	1X6 digit display panel meter; adjustable zero and span; universal input.	\$300.00
	37067	Calibration adapter for the HMP 42 probe	\$70.00
	19809	Rubber sleeve set (10 pcs) for the HMP 42 probe	\$15.00
	45-20618	PG 9 NPT 1/2 cable connector	\$15.00
	45-20775	PG 11 to NPT 1/2 cable connector	\$15.00
	85-21804	ISO 1/2 to NPT 1/2 pressure fitting	\$ 25.00
	85-20557	Compression fitting, 13.5 mm	\$25.00
	DMP 248 BVS	Ball valve installation set	\$65.00
	DMP 248 SC	Sample cell	\$140.00
	90-2271	Power supply	\$165.00
BACK to Catalog	85-HMPS	Power supply in NEMA 4 enclosure	\$195.00
Table of Contents	85-20671	6 ft. Ac power cord	\$10.00
contents	Psycalc software		\$25.00
BACK to Spare/Replacement Parts:		nent Parts:	
Price List Table of Contents	18258HM	HUMICAP HC composite RH sensor HUMICAP KC composite RH sensor	
contents	19283HM	DRYCAP sensor for DMP 248 transmitter	\$250.00

102001111	
	HUMICAP H-180 sensor, capsulates with connector\$112.00
16663HM	HUMICAP H-series sensor, capsulated with connector. Replaces 0062HM and 0174HM sensors \$112.00
16665HM	HUMICAP H-series sensor, capsulated with membrane filter and connector\$112.00
0062 HM	HUMICAP H-series sensor, capsulated with connector\$112.00
0174 HM	HUMICAP H-series sensor, capsulated with connector\$112.00
15202 HM	HUMICAP H-series sensor, capsulated with membrane filter and connector
	HUMICAP J-series sensor, capsulated with membrane filter and connector
	HUMICAP K-series sensor, capsulated with membrane filter and connector

	1518 HM	HUMICAP AK-sensor, w/o connector	\$112.00
	1638 HM	HUMICAP AK sensor, with connector	\$112.00
	15778 HM	INTERCAP sensor encapsulated	
	15872 HM	INTERCAP sensor encapsulated with membrane filter	
	HMP 42P 235SP	Sensor head assembly for the HMP 42 probe.	\$305.00
	7095	PT 100 RTD temperature element for HMP 36B and 130 series	\$50.00
	10429	PT 100 RTD temperature element for all but HMP 36B and 130 series	\$50.00
	17086	PT 1000 RTD temperature element	
	0195 HM	Sintered filter, 133 microns, ø 12.0 mm	\$45.00
	46670 HM	Sintered ss filter for HMD 60/70, ø 12.0 mm	\$45.00
	6685 HM	Sintered filter, 37 microns, ø 18.5 mm	\$30.00
	6686 HM	Sintered filter, 216 microns, ø18.5 mm	\$30.00
	16452	Sintered filter, stainless steel, 13.5 mm.	\$50.00
	16562	PPS Grid, 13.5 mm	\$25.00
	16720	PPS Grid and stainless steel net, 13,5 mm.	\$30.00
	17230	PTFE membrane, 13.5 mm.	\$25.00
	10159 HM	Membrane filter, 0.5 microns, ø12.0 mm	\$25.00
BACK to	2787 HM	Membrane filter, 0.5 microns, ø 18.5 mm	\$25.00
Catalog Table of	6221	Plastic grid, ø 12.0 mm	\$25.00
Contents	6597	Plastic grid, ø 18.5 mm	\$25.00
	15795	Metallized plastic grid, ø 18.5 mm	\$25.00
BACK to Price List	16126	Metallized membrane filter, ø 18.5 mm	\$25.00
Table of Contents	15724	Metallized plastic grid, ø 12 mm for HMD 40U/50U and HUMITTER	\$25.00
contents	16131	Metallized membrane filter, ø 12 mm for HMD 40/50 and HUMITTER	\$25.00
	17039	Membrane filter for HMD 60/70/40/50 and HUMITTER	\$25.00
	46717	Plastic grid, 18.5mm	\$25.00
	46780	Stainless steel filter for DMP 246 CS.	
	46782	Stainless steel grid for DMP 246.	\$50.00
	46999	Sintered stainless steel filter for HMP 228.	\$45.00
	19858 HM	Membrane filter tube set (5pcs.) for the HMP 42 probe	\$25.00
	19867 HM	Steel grid for the HMP 42 probe.	\$45.00
	HM-LiCI	Granulated salt (500 g) in container, for HMK 11	\$ 67.50

	HM-K ₂ SO ₄	Granulated salt (500 g) in container, for HMK 11	\$ 40.00
	HM-NaCl	Granulated salt (500 g) in container, for HMK 11	\$ 50.00
	CARBON DIOX	IDE (CO ₂) INSTRUMENTS	
	GMD 20	CARBOCAP carbon dioxide transmitter for duct mounting complete with: 24 VDC or 24 VAC input power; selectable 0 to 20 mA, 4 to 20 mA, or 0 to 10 VDC output signal corresponding to 0 to 2,000 ppm CO_2 .	\$495.00
	GMD 20D	CARBOCAP carbon dioxide transmitter for duct mounting complete plus local displayand relay option.	\$540.00
	GMW 21	CARBOCAP carbon dioxide transmitter for duct mounting complete with: 24 VDC or 24 VAC input power; selectable 0 to 20 mA, 4 to 20 mA, or 0 to 10 VDC output signal corresponding to 0 to 2,000 ppm CO_2 .	\$460.00
	GMW 21D	CARBOCAP carbon dioxide transmitter for wall mounting. Same as GMW 21 plus	\$505.00
	GMA 20T	Analog temperature option for GMW 21.	\$55.00
	GMI 21	Local display and relay option for GMW 21.	\$80.00
	GMR 20	Relay option for GMW 21	\$55.00
	GML 20	LonWorks module for GM 20 transmitters.	\$155.00
	GML 20T	LonWorks® module including temperature for GM 20 transmitters	\$240.00
	GMP 111	Carbon dioxide transmitter for wall mounting complete with: 18 to 30 VDC input power; selectable 0 to 20mA, 4 to 20mA, or 0 to 10V output signal; 0 to 3,000 ppm CO ₂ range; selectable relay output settings; nondispersive infrared (NDIR) technology.	\$650.00
BACK to	GMP 111E	Carbon dioxide transmitter for wall mounting. Same as above except 0 to 7,000 ppm CO_2 range.	\$650.00
Catalog Table of	GMI 111	Display unit for GMP 111.	\$180.00
Contents	GM 12A	Portable carbon dioxide (CO_2) meter complete with: rechargeable battery and ACadapter; 0 to 3,000 ppm CO_2 range; selectable alarm setting; pump aspirated for remote or local measurements. NDIR (non-dispersive infrared technology).	\$1,995.00
BACk to Price List	GM 12B	Portable carbon dioxide (CO ₂) meter. Same as GM 12A but with 0 to 3% CO ₂ range	\$1,995.00
Table of Content	GMM 11A/ B/C	OEM CO_2 module with nonlinear 0 to 1 VDC output signal corresponding to: 0 to 3,000 ppm (CO_2 (GMM 11A) 0 to 3% CO_2 (GMM 11B) 0 to 10% CO_2 (GMM 11C)	contact factory
	GMM 12/A/B/C	Same as above except linear 4 to 20 mA output signal.	contact factory
	GMM 20W	CARBOCAP OEM module.	contact factory
	GMM 11 AD GMM 12 AD	$CO_2 OEM$ module for 0 to 3,000 ppm CO_2 to be used with 18191 fixed diffusion tube	contact factory
	GMM 221	CO ₂ OEM module for demanding applications complete with 11 to 30 VDC input power,user selectable analog output corresponding to various CO ₂ ranges. Features remote probe and circuit board assembly and Carbocap® technology.	contact factory

Options:

18192	Calibration kit for CO ₂ transmitters to include: balloons, pump and tubing
19222 GM	Calibration software kit for GM 20 series CO ₂ transmitter to include cable and disk
18515	Pump for CO ₂ OEM modules\$195.00
18179	Filter pump aspirated CO ₂ OEM modules\$20.00
18191	Diffusion tube assembly for GMM 11 AD/12 AD CO ₂ OEM modules\$70.00
19255	Remote diffusion tube for pump aspirated $CO_2 OEM$ modules\$70.00

NIST TRACEABLE BAROMETERS

PTB 100A	Analog barometric pressure transmitter. NIST traceable with calibration certificate included. Measuring range 8001060mb/-40+60°C; accuracy at room temperature ±0.3mb, supply voltage 1030 VDC; output signal 05 VDC.	\$795.00
PTB 100B	Analog barometric pressure transmitter. Same as PTB 100A, but measuring range 6001060 mb/-40+60°C, accuracy at room temperature ±0.5 mbar.	\$1,030.00
PTB 101B	Analog barometric pressure transmitter. Same as PTB 100B, except output is 0 to 2.5 corresponding to 600 to 1060 mb.	VDC\$595.00
PTB 101C	Analog barometric pressure transmitter. Same as PTB 100A, except output is 0 to 2.5 corresponding to 900 to 1100 mb.	VDC\$650.00
PTB 200A	Digital barometric pressure transmitter. NIST traceable with calibration certificate included. Measuring range 6001100 mbar/-40+60°C. Total accuracy including temperature dependence ±0.20 mbar. Supply voltage 1030 VDC.	\$1,600.00
PTB 220	Pressure Transmitter	See Order Guide page 23
PTU 200	Pressure, Temperature and Humidity Transmitter	See Order Guide page 24
PTB 220 TS	Oak carrying case and recharging electronics	\$1,760.00
PTU 200 MIK	Meteorological installation kit for PTU 200	\$1,100.00
PTU 200 Tripod	For PTU 200 MIK	\$1,470.00
	PTB 100B PTB 101B PTB 101C PTB 200A PTB 220 PTU 200 PTB 220 TS PTU 200 MIK	 included. Measuring range 8001060mb/-40+60°C; accuracy at room temperature ±0.3mb, supply voltage 1030 VDC; output signal 05 VDC. PTB 100B Analog barometric pressure transmitter. Same as PTB 100A, but measuring range 6001060 mb/-40+60°C, accuracy at room temperature ±0.5 mbar. PTB 101B Analog barometric pressure transmitter. Same as PTB 100B, except output is 0 to 2.5 corresponding to 600 to 1060 mb. PTB 101C Analog barometric pressure transmitter. Same as PTB 100A, except output is 0 to 2.5 corresponding to 900 to 1100 mb. PTB 200A Digital barometric pressure transmitter. NIST traceable with calibration certificateincluded. Measuring range 6001100 mbar/-40+60°C. Total accuracy including temperature dependence ±0.20 mbar. Supply voltage 1030 VDC. PTB 220 Pressure Transmitter. PTB 220 TS Oak carrying case and recharging electronics

BACK to Price List Table of Contents

METEOROLOGICAL PRODUCTS

	HMP 45A	Humidity and temperature probe for meteorological measurement complete with: 7 to 35 VDC input power; < 4mA current consumption; linear 0 to 1 VDC output signal corres- ponding to 0 to 100% relative humidity and -40°C to +60°C (-40°F to +140°F); HUMICAP 180 RH sensor; PT 1000 RTD temperature element; membrane filter; calibrated.	\$ 595.00
	HMP 45 D	Same as HMP 45A, except temperature output is a 4-wire resistance from Pt 100 RTD	\$565.00
	2212 HM	Solar radiation shield with offset U-bolt bracket. Specify probe diameter.	\$295.00
		A typical digital wind system includes an anemometer, wind vane, crossarm assembly and junction box, wind sensor controller and digital display of wind speed and direction. Contact factory for additional configurations, specifications, or pricing.	
	WAA 151	Anemometer (wind speed)	\$640.00
	WAV 151	Wind vane (wind direction)	\$690.00
	WAA 251	Cup/shaft heated anemometer	\$1,675.00
	WAC 151	Crossarm for anemometer and wind vane	\$400.00
	DKP 15W	Pole Mast, 3.0M with wind sensor extension	\$580.00
	WAT 12	Wind transmitter/cross arm assembly	
	WMS 301	WMS Combo wind sensor	
	WD 20	Wind 20 digital display	
	WD 30	Multichannel averaging wind display	\$1330.00
BACK to Catalog Table of Contents	MAWS 101	Standard System w/the following: QML 101 Logger w/2Mb flash memory for data logging QMB 101 1.3 Ah internal rechargeable battery Pole mast (2M) with total weight of 3M QMH101 Temperature and Relative Humidity sensors w/radiation shield One sensor arm for QMH 101 and e.g. for QMR 101 QMW 101 Wind Direction and Speed Sensor cable RS232 Cable Lizard Operating Software	\$4,500.00
BACK to Price List			
Table of	Maws Options: PMT 16A	Pressure Sensor	\$641.00
Contents	QMR 101	Rain Gauge on Sensor Arm	
	QMR 102	Stand Alone model w/6M of cable connector base plate	
	QMS 101	Solar Radiation: Global 1 w/sensor arm	
	QMS 102	Solar Radiation: Global 2 w/sensor arm	\$773.00
	QMN 101	Solar Radiation: Net Radiation w/sensor arm	\$1,087.00
	QMT 103	Soil Temperature: 1,2 or 3 Sensors	\$103.00
	DSI 485	Serial Modules: Isolated RS-485 module	\$194.00
	QMP 102	Solar Power: Solar Panel 2.2W/6V	\$247.00
	WHP 151	Mains Power Supply for Outdoor Use	\$480.00

CALIBRATION LABORATORY AND SERVICE

Humidity:

2% standard calibration	\$100.00
1% calibration**	\$150.00
Certificate of calibration	\$50.00
Sensor	\$112.00
Labor	\$95.00/hour
Parts	List cost for all parts
Turn around time	5 days after receipt by calibration lab
Special humidity calibrations (range 10% to 95% @ 10°C to 70°C)	\$75.00 per point
Express service; 2 day guarantee	

* The standard calibration consists of a 4-point calibration with adjustments made at 0% and 75.5% and linearity checked at ... 11.3% and 97.6%. Temperature is verified at ambient.

** 1% Calibration is available for the HMP 230 and HMP 260 series, HMP 243, and the HMI 38 with HMP 35E/36E/37E, HMI 41 and HMP 46.

Temperature:

Calibration*** (with certificate) (range -20°C to +120 °C)	\$75.00 per point
Temperature respanning (1st unit)	\$50.00
Additional respanning (each additional unit)	
Turn around time	
Express service; 2 day guarantee	

*** Two point minimum on temperature calibrations

Carbon Dioxide:

	Calibration****	\$100.00
	Certificate	\$50.00
	Labor	\$95.00/hour
BACK to Catalog Table of	Parts	List cost for all parts
	Turn around time	
Contents	**** Standard calibration: zero and span, special calibration can be arranged	4

**** Standard calibration; zero and span, special calibration can be arranged.

Pressure:

BACK to Price List Table of Contents	Calibration (standard) PTA427, PTB 100 Series	\$195.00
	Calibration (Class A) PA11A, PTB 200 and PTB 220 Series,	\$295.00
	NIST certificates	Included
	Parts	List cost for all part
	Turn around time	21 to 28 days
	Labor	\$95.00

Prices subject to change without notice.

Humidity Transmitter Selection Guide

• Match your requirements to the product features listed on the chart to select the best humidity or dewpoint transmitter for your needs.

Click here for 220/230, 240 and 260/360 Series

Click here for the 140 and 60/70 Series

Click here for the 21/31 and 40/50 Series

BACK to Catalog Table of Contents

To Index

• Still not sure?

Contact Vaisala and ask to speak with the sales engineer responsible for your location.

1-888-VAISALA (824-7252)

100 Commerce Way, Woburn, MA 01801 Phone: 781-933-4500 FAX: 781-933-8029 Online catalog: www.vaisala.com/inc/ssdcat www.vaisala.com

	Humidity Tr	ans	mi	tte	r Se	ele	ctic	on	Gui	de							
		220/230 Series					ies		260/360 Series								
	HIMB 228		C1 111	11 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21818		012143	1812	THIN LO	MI 30E+	11/2 30	11130	- HN 302	21300			
	Product Features			\backslash				\searrow					\backslash	\backslash			
Measurement of:	Relative Humidity only (RH)										Х						L
	RH and temperature (T) RH, T, dewpoint, absolute humidity, mixing ratio, wet bulb temperature, and enthalpy		S	S	S	S	S	x				Х	х	x	x	x	
	Water activity, temperature Dewpoint (Td), mixing ratio	S							_							S	
									S	c							
	Td, RH, T, and ppmv		S	c	c	c	c	S		S		Х	Х	X	X	X	
Accuracy:	RH one percent		2	S	S	S	S	2		S	V	<u> </u>	<u> </u>	^	^	^	<u> </u>
	RH two percent										Х						
	RH three percent								~	-							
	Td two degrees Celsius								S	S							
Configuration:	Wall-mount measurement		X								Х	Х					
	Duct-mount measurement			Х		X		Х					Х		X		
	Probe with cable	S		S	S	S	S	х	S	S			Х	Х	X	Х	
	Local digital display option	S	S	S	S	S	S	х	S	S		X	x	X	X	х	
*Can use the	Alarm Relay output option *	S	S	S	S	S	S	S	S	S							
internal power module if alarm	Metal construction - additional electromagnetic protection	x	x	х	x	x	x	х	х	х	х	x	x	x	x	x	
outputs are not	Plastic construction																
used in same	Ball Valve and Hot Tap compatible	S					S			S						S	
transmitter.	NEMA - protection against dirt and moisture (wash down)	х	х	х	x	х	х	х	х	х	х	х	х	x	x	x	
Special Applications:	High temperature	Х		Х	X	S	X			Х			Х	X	X	Х	
	High temperature & high humidity								S								
	Low temperature	Х	X	Х	X	X	X			S		Х	Х	Х	X	X	
	Pressurized spaces - overpressure & underpressure	x			s		x			х				S		x	
	Tight spaces			S									S				
	Intrinsically safe										S	S	S	S	S	S	
	Outdoor			S				S									
	Extreme humidity conditions							S	S	S							
	High levels of gaseous contaminants	Х	X	Х	X	X	X	S	Х	Х							
	Process requires sampling apparatus									S							
Powered by:	24 VDC	Х	X	Х	X	X	X	Х	Х	Х	Х	Х	Х	Х	X	Х	
	24 VAC	Х	X	Х	X	X	X	Х	Х	Х							
	Optional 115/230 VAC *	Х		Х	X	X	X		Х	Х							
Calibration:	Interchangeable sensor-no calibration																
	One point field calibration	Х	Х	Х	Х	X	Х	Х	Х	Х							
Output:	mA 2-wire current loop										Х	Х	Х	Х	X	Х	
	mA	Х	Х	Х	X	x	X	Х	Х	Х							
	Volts, selectable range	Х	Х	Х	X	X	X	Х	Х	Х							
	Serial	Х	Х	Х	Х	X	X	Х	Х	Х		Х	Х	Х	X	Х	

"S" indicates especially significant feature that most distinguishes a particular product model from others.

BACK to Catalog Table of Contents

	Humidity Transm	itte	r S	ele			_								
	140 Series 60/70 Series														
	Product Features			THIS OF	110 02	HIN OUO	111000	THIN OF		AL OF		ANN A	32		
Measurement of:	Relative Humidity only (RH)		\square		X	\vdash	x	$ \rightarrow $	x	\rightarrow	X		x		
weasurement or.	RH and temperature (T)	x	x	х		x	~	Х		X		Х		Х	
	RH, T,dewpoint, absolute humidity, mixing ratio, wet bulb temperature, and enthalpy														
	Water activity, temperature Dewpoint (Td), mixing ratio														
	Td, RH, T, and ppmv														
Accuracy:	RH one percent														
	RH two percent	S	S	S	S	S	S	S	S	S	S	S	S	S	
	RH three percent														
	Td two degrees Celsius														
Configuration:	Wall-mount measurement	Х							X	X			Х	Х	
	Duct-mount measurement		x		х	X					х	X			
	Probe with cable			s											
	Local digital display option	S	S	S											
*Can use the	Alarm Relay output option *														
internal power module if alarm	Metal construction - additional electromagnetic protection				х	x	х	x			x	x			
outputs are not	Plastic construction	х	x	x					x	x			Х	Х	
used in same	Ball Valve and Hot Tap compatible														
transmitter.	NEMA - protection against dirt and moisture (wash down)	s	x	x	х	x	х	x			x	x			
Special Applications:	High temperature				Х	X					Х	Х			
	High temperature & high humidity														
	Low temperature				х	X					х	X			
	Pressurized spaces - overpressure & underpresssure														
	Tight spaces			S											
	Intrinsically safe														
	Outdoor						S	S							
	Extreme humidity conditions														
	High levels of gaseous contaminants														
	Process requires sampling apparatus														
Powered by:	24 VDC	Х	Х	Х	Х	X	Х	Х	X	Х	Х	Х	X	Х	
	24 VAC	Х	X	X							Х	Х	X	Х	
	Optional 115/230 VAC *														┝──
Calibration:	Interchangeable sensor-no calibration														┢───
<u> </u>	One point field calibration	Х	Х	Х	Х	X	Х				Х	Х	Х	Х	┝──
Output:	mA 2-wire current loop				Х	X	Х	Х	X	Х					┢───
	mA Volts, selectable range	X	X	X							V	V	V	X	
	Serial	Х	X	X							X	X	X	Х	┢───
	ially significant feature that most distinguis												_		L

BACK to Catalog Table of Contents

	Humidity Transn	1			Su			0 Se						
		21/31 Seri												
	Product Features	HWIN TINE	HINN LO	APL NINN 18	ar civit	LIND 40	NIN N	LININ SU	TO OWN	HNID 32	MIN SC	LINN	501	
Measurement of:	Relative Humidity only (RH)		x		\square		X		X		X		X	
ineasurement or.	RH and temperature (T)		~	x		Х		x		x		x		
	RH, T,dewpoint, absolute humidity, mixing ratio, wet bulb temperature, and enthalpy													
	Water activity, temperature Dewpoint (Td), mixing ratio													
	Td, RH, T, and ppmv													
Accuracy:	RH one percent													
	RH two percent		S	S	S	S								
	RH three percent						S	S	S	S	S	S	S	S
	Td two degrees Celsius													
Configuration:	Wall-mount measurement		х	X	Х	х	X		X	X	x	X	Х	X
	Duct-mount measurement						^	X						-
	Probe with cable											<u> </u>		-
	Local digital display option											<u> </u>		-
*Can use the	Alarm Relay output option *													
internal power module if alarm	Metal construction - additional electromagnetic protection													
outputs are not	Plastic construction		Х	X	X	Х	Х	X	X	X	X	X	X	X
used in same	Ball Valve and Hot Tap compatible													
transmitter.	NEMA - protection against dirt and moisture (wash down)		S	S	S	S	х	x			x	x		
Special Applications:	High temperature													
	High temperature & high humidity													
	Low temperature													
	Pressurized spaces - overpressure & underpresssure													
	Tight spaces													
	Intrinsically safe													
	Outdoor													
	Extreme humidity conditions													
	High levels of gaseous contaminants													
	Process requires sampling apparatus													
Powered by:	24 VDC		Х	Х	Х	Х	Х	X	Х	X	X	X		>
	24 VAC				Х	Х					X	X	X	>
	Optional 115/230 VAC *													
Calibration:	Interchangeable sensor-no calibration						S	S	S	S	S	S	S	
	One point field calibration		Х	Х	Х	Х								
Output:	mA 2-wire current loop		Х	Х			Х	X	X	X				
	mA													
	Volts, selectable range				Х	Х					X	X	Х)
	Serial													